Convex envelopes for quadratic and polynomial functions over polytopes

In this paper we consider the problem of computing the value and a supporting hyperplane of the convex envelope for quadratic and polynomial functions over polytopes with known vertex set. We show that for general quadratic functions the computation can be carried on through a copositive problem, but in some cases (including all the two-dimensional … Read more

Exploiting Second-Order Cone Structure for Global Optimization

Identifying and exploiting classes of nonconvex constraints whose feasible region is convex after branching can reduce the time to compute global solutions for nonlinear optimization problems. We develop techniques for identifying quadratic and nonlinear constraints whose feasible region can be represented as the union of a finite number of second-order cones, and we provide necessary … Read more

Max-min optimizations on the rank and inertia of a linear Hermitian matrix expression subject to range, rank and definiteness restrictions

The inertia of a Hermitian matrix is defined to be a triplet composed by the numbers of the positive, negative and zero eigenvalues of the matrix counted with multiplicities, respectively. In this paper, we give various closed-form formulas for the maximal and minimal values for the rank and inertia of the Hermitian expression $A + … Read more

Inclusion Certificates and Simultaneous Convexification of Functions

We define the inclusion certificate as a measure that expresses each point in the domain of a collection of functions as a convex combination of other points in the domain. Using inclusion certificates, we extend the convex extensions theory to enable simultaneous convexification of functions. We discuss conditions under which the domain of the functions … Read more

On convex relaxations for quadratically constrained quadratic programming

We consider convex relaxations for the problem of minimizing a (possibly nonconvex) quadratic objective subject to linear and (possibly nonconvex) quadratic constraints. Let F denote the feasible region for the linear constraints. We first show that replacing the quadratic objective and constraint functions with their convex lower envelopes on F is dominated by an alternative … Read more

Copositivity and constrained fractional quadratic problems

We provide Completely Positive and Copositive Programming formulations for the Constrained Fractional Quadratic Problem (CFQP) and Standard Fractional Quadratic Problem (StFQP). Based on these formulations, Semidefinite Programming (SDP) relaxations are derived for finding good lower bounds to these fractional programs, which are used in a global optimization branch-and-bound approach. Applications of the CFQP and StFQP, … Read more

Explicit Convex and Concave Envelopes through Polyhedral Subdivisions

In this paper, we derive explicit characterizations of convex and concave envelopes of several nonlinear functions over various subsets of a hyper-rectangle. These envelopes are obtained by identifying polyhedral subdivisions of the hyper-rectangle over which the envelopes can be constructed easily. In particular, we use these techniques to derive, in closed-form, the concave envelopes of … Read more

Separation and Relaxation for cones of quadratic forms

Let P be a pointed, polyhedral cone in R_n. In this paper, we study the cone C = cone{xx^T: x \in P} of quadratic forms. Understanding the structure of C is important for globally solving NP-hard quadratic programs over P. We establish key characteristics of C and construct a separation algorithm for C provided one … Read more

Separating Doubly Nonnegative and Completely Positive Matrices

The cone of Completely Positive (CP) matrices can be used to exactly formulate a variety of NP-Hard optimization problems. A tractable relaxation for CP matrices is provided by the cone of Doubly Nonnegative (DNN) matrices; that is, matrices that are both positive semidefinite and componentwise nonnegative. A natural problem in the optimization setting is then … Read more

A joint+marginal approach to parametric polynomial optimization

Given a compact parameter set $Y\subset R^p$, we consider polynomial optimization problems $(P_\y$) on $R^n$ whose description depends on the parameter $y\in Y$. We assume that one can compute all moments of some probability measure $\varphi$ on $Y$, absolutely continuous with respect to the Lebesgue measure (e.g. $Y$ is a box or a simplex and … Read more