Nonconvex Constrained Optimization by a Filtering Branch and Bound

A major difficulty in optimization with nonconvex constraints is to find feasible solutions. As simple examples show, the alphaBB-algorithm for single-objective optimization may fail to compute feasible solutions even though this algorithm is a popular method in global optimization. In this work, we introduce a filtering approach motivated by a multiobjective reformulation of the constrained … Read more

Proximity measures based on KKT points for constrained multi-objective optimization

An important aspect of optimization algorithms, for instance evolutionary algorithms, are termination criteria that measure the proximity of the found solution to the optimal solution set. A frequently used approach is the numerical verification of necessary optimality conditions such as the Karush-Kuhn-Tucker (KKT) conditions. In this paper, we present a proximity measure which characterizes the … Read more

The extreme rays of the \times6$ copositive cone

We provide a complete classification of the extreme rays of the $6 \times 6$ copositive cone ${\cal COP}^6$. We proceed via a coarse intermediate classification of the possible minimal zero support set of an exceptional extremal matrix $A \in {\cal COP}^6$. To each such minimal zero support set we construct a stratified semi-algebraic manifold in … Read more

On the tightness of SDP relaxations of QCQPs

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study conditions under which the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework for proving such sufficient conditions. Then using this framework, we show … Read more

Spurious Local Minima Exist for Almost All Over-parameterized Neural Networks

A popular belief for explaining the efficiency in training deep neural networks is that over-paramenterized neural networks have nice landscape. However, it still remains unclear whether over-parameterized neural networks contain spurious local minima in general, since all current positive results cannot prove non-existence of bad local minima, and all current negative results have strong restrictions … Read more

On Sum of Squares Representation of Convex Forms and Generalized Cauchy-Schwarz Inequalities

A convex form of degree larger than one is always nonnegative since it vanishes together with its gradient at the origin. In 2007, Parrilo asked if convex forms are always sums of squares. A few years later, Blekherman answered the question in the negative by showing through volume arguments that for high enough number of … Read more

Sparse PCA on fixed-rank matrices

Sparse PCA is the optimization problem obtained from PCA by adding a sparsity constraint on the principal components. Sparse PCA is NP-hard and hard to approximate even in the single-component case. In this paper we settle the computational complexity of sparse PCA with respect to the rank of the covariance matrix. We show that, if … Read more

Tangencies and Polynomial Optimization

Given a polynomial function $f \colon \mathbb{R}^n \rightarrow \mathbb{R}$ and a unbounded basic closed semi-algebraic set $S \subset \mathbb{R}^n,$ in this paper we show that the conditions listed below are characterized exactly in terms of the so-called {\em tangency variety} of $f$ on $S$: (i) The $f$ is bounded from below on $S;$ (ii) The … Read more

Convexification of polynomial optimization problems by means of monomial patterns

Convexification is a core technique in global polynomial optimization. Currently, two different approaches compete in practice and in the literature. First, general approaches rooted in nonlinear programming. They are comparitively cheap from a computational point of view, but typically do not provide good (tight) relaxations with respect to bounds for the original problem. Second, approaches … Read more

Intersection disjunctions for reverse convex sets

We present a framework to obtain valid inequalities for optimization problems constrained by a reverse convex set, which is defined as the set of points in a polyhedron that lie outside a given open convex set. We are particularly interested in cases where the closure of the convex set is either non-polyhedral, or is defined … Read more