Convex sets with semidefinite representation

We provide a sufficient condition on a class of compact basic semialgebraic sets K for their convex hull to have a lifted semidefinite representation (SDr). This lifted SDr is explicitly expressed in terms of the polynomials that define K. Examples are provided. For convex and compact basic semi-algebraic sets K defined by concave polynomials, we … Read more

Global minimization using an Augmented Lagrangian method with variable lower-level constraints

A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration the method requires the $\varepsilon$-global minimization of the Augmented Lagrangian with simple constraints. Global convergence to an $\varepsilon$-global minimizer of the original problem is proved. The subproblems are solved using the $\alpha$BB … Read more

Solving systems of nonlinear equations with continuous GRASP

A method for finding all roots of a system of nonlinear equations is described. Our method makes use of C-GRASP, a recently proposed continuous global optimization heuristic. Given a nonlinear system, we solve a corresponding adaptively modified global optimization problem multiple times, each time using C-GRASP, with areas of repulsion around roots that have already … Read more

On the Copositive Representation of Binary and Continuous Nonconvex Quadratic Programs

We establish that any nonconvex quadratic program having a mix of binary and continuous variables over a bounded feasible set can be represented as a linear program over the dual of the cone of copositive matrices. This result can be viewed as an extension of earlier separate results, which have established the copositive representation of … Read more

A continuous GRASP to determine the relationship between drugs and adverse reactions

Adverse drug reactions (ADRs) are estimated to be one of the leading causes of death. Many national and international agencies have set up databases of ADR reports for the express purpose of determining the relationship between drugs and adverse reactions that they cause. We formulate the drug-reaction relationship problem as a continuous optimization problem and … Read more

The complexity of optimizing over a simplex, hypercube or sphere: a short survey

We consider the computational complexity of optimizing various classes of continuous functions over a simplex, hypercube or sphere. These relatively simple optimization problems have many applications. We review known approximation results as well as negative (inapproximability) results from the recent literature. CitationCentER Discussion paper 2006-85 Tilburg University THe NetherlandsArticleDownload View PDF

Speeding up continuous GRASP

Continuous GRASP (C-GRASP) is a stochastic local search metaheuristic for finding cost-efficient solutions to continuous global optimization problems subject to box constraints (Hirsch et al., 2006). Like a greedy randomized adaptive search procedure (GRASP), a C-GRASP is a multi-start procedure where a starting solution for local improvement is constructed in a greedy randomized fashion. In … Read more

Solving molecular distance geometry problems by global optimization algorithms

In this paper we consider global optimization algorithms based on multiple local searches for the Molecular Distance Geometry Problem (MDGP). Three distinct approaches (Multistart, Monotonic Basin Hopping, Population Basin Hopping) are presented and for each of them a computational analysis is performed. The results are also compared with those of two other approaches in the … Read more

Exploiting symmetries in SDP-relaxations for polynomial optimization

In this paper we study various approaches for exploiting symmetries in polynomial optimization problems within the framework of semi definite programming relaxations. Our special focus is on constrained problems especially when the symmetric group is acting on the variables. In particular, we investigate the concept of block decomposition within the framework of constrained polynomial optimization … Read more

Local versus Global Profit Maximization: The Case of Discrete Concave Production Functions

In this paper we show that for discrete concave functions, a local maximum need not be a global maximum. We also provide examples of discrete concave functions where this coincidence holds. As a direct consequence of this, we can establish the equivalence of local and global profit maximizers for an equivalent well-behaved production function that … Read more