Generating functions and duality for integer programs

We consider the integer program P -> max {c’x | Ax=y; x\in N^n }. Using the generating function of an associated counting problem, and a generalized residue formula of Brion and Vergne, we explicitly relate P with its continuous linear programming (LP) analogue and provide a characterization of its optimal value. In particular, dual variables … Read more

Fuzzy Control of Stochastic Global Optimization Algorithms and Very Fast Simulated Reannealing

This paper presents a fuzzy control approach for improving convergence time in stochastic global minimization algorithms .We show concrete results when the method is applied to an efficient algorithm based on ideas related to Simulated Annealing. Article Download View Fuzzy Control of Stochastic Global Optimization Algorithms and Very Fast Simulated Reannealing

Sums of Squares Relaxations of Polynomial Semidefinite Programs

A polynomial SDP (semidefinite program) minimizes a polynomial objective function over a feasible region described by a positive semidefinite constraint of a symmetric matrix whose components are multivariate polynomials. Sums of squares relaxations developed for polynomial optimization problems are extended to propose sums of squares relaxations for polynomial SDPs with an additional constraint for the … Read more

Local optima smoothing for global optimization

It is widely believed that in order to solve large scale global optimization problems an appropriate mixture of local approximation and global exploration is necessary. Local approximation, if first order information on the objective function is available, is efficiently performed by means of local optimization methods. Unfortunately, global exploration, in absence of some kind of … Read more

Complete Search in Continuous Global Optimization and Constraint Satisfaction

This survey covers the state of the art of techniques for solving general purpose constrained global optimization problems and continuous constraint satisfaction problems, with emphasis on complete techniques that provably find all solutions (if there are finitely many). The core of the material is presented in sufficient detail that the survey may serve as a … Read more

Generalized Lagrangian Duals and Sums of Squares Relaxations of Sparse Polynomial Optimization Problems

Sequences of generalized Lagrangian duals and their SOS (sums of squares of polynomials) relaxations for a POP (polynomial optimization problem) are introduced. Sparsity of polynomials in the POP is used to reduce the sizes of the Lagrangian duals and their SOS relaxations. It is proved that the optimal values of the Lagrangian duals in the … Read more

Convex- and Monotone- Transformable Mathematical Programming Problems and a Proximal-Like Point Method

The problem of finding singularities of monotone vectors fields on Hadamard manifolds will be considered and solved by extending the well-known proximal point algorithm. For monotone vector fields the algorithm will generate a well defined sequence, and for monotone vector fields with singularities it will converge to a singularity. It will be also shown how … Read more

Mathematical optimization for the inverse problem of intensity modulated radiation therapy

In this tutorial we discuss modeling issues in intensity modulated radiation therapy, contrasting the continuous model with the fully-discretized one and considering feasibility formulations versus optimization setups. We review briefly some mathematical optimization techniques for IMRT. These include global optimization, multi-objective optimization, linear and mixed integer programming and projection methods. Citation in: J.R. Palta and … Read more

The global optimization of Morse clusters by potential energy transformations

The Morse potential is a simple model pair potential that has a single parameter $\rho$ which determines the width of the potential well and allows a wide variety of materials to be modelled. Morse clusters provide a particularly tough test system for global optimization algorithms, and one that is highly relevant to methods that are … Read more

D.C. Versus Copositive Bounds for Standard QP

The standard quadratic program (QPS) is $\min_{x\in\Delta} x’Qx$, where $\Delta\subset\Re^n$ is the simplex $\Delta=\{ x\ge 0 : \sum_{i=1}^n x_i=1 \}$. QPS can be used to formulate combinatorial problems such as the maximum stable set problem, and also arises in global optimization algorithms for general quadratic programming when the search space is partitioned using simplices. One … Read more