D.C. Versus Copositive Bounds for Standard QP

The standard quadratic program (QPS) is $\min_{x\in\Delta} x’Qx$, where $\Delta\subset\Re^n$ is the simplex $\Delta=\{ x\ge 0 : \sum_{i=1}^n x_i=1 \}$. QPS can be used to formulate combinatorial problems such as the maximum stable set problem, and also arises in global optimization algorithms for general quadratic programming when the search space is partitioned using simplices. One … Read more

Global optimization of rational functions: a semidefinite programming approach

We consider the problem of global minimization of rational functions on $\LR^n$ (unconstrained case), and on an open, connected, semi-algebraic subset of $\LR^n$, or the (partial) closure of such a set (constrained case). We show that in the univariate case ($n=1$), these problems have exact reformulations as semidefinite programming (SDP) problems, by using reformulations introduced … Read more

SIAG/Opt Views-and-News Vol 14 No 1

SIAM’s SIAG/Opt Newsletter special issue on Large Scale Nonconvex Optimization. Guest editors Sven Leyffer and Jorge Nocedal, with contributions by Gould, Sachs, Biegler, Waechter, Leyffer, Bussieck and Pruessner. Citation SIAG/Opt Views-and-News, Volume 14 Number 1, April 2003. http://fewcal.uvt.nl/sturm/siagopt/ Article Download View SIAG/Opt Views-and-News Vol 14 No 1

A Multicriteria Approach to Bilevel Optimization

In this paper we study the relationship between bilevel optimization and bicriteria optimization. Given a bilevel optimization problem, we introduce an order relation such that the optimal solutions of the bilevel problem are the nondominated points with respect to the order relation. In the case where the lower level problem of the bilevel optimization problem … Read more

Global Optimization of Homogeneous Polynomials on the Simplex and on the Sphere

We obtain rigorous estimates for linear and semidefinite relaxations of global optimization problems on the simplex and on the sphere Citation Research report, February, 2003 Article Download View Global Optimization of Homogeneous Polynomials on the Simplex and on the Sphere

A randomized global optimization method for protein-protein docking

In this paper we report results on the problem of docking two large proteins by means of a two-phase monotonic basin hopping method. Given an appropriate force field which is used to measure the interaction energy between two biomolecules which are considered as rigid bodies, we used a randomized global optimization methods based upon the … Read more

New global optima for Morse clusters at $\rho=8$

We recently discovered 5 new putative globally optimum configurations for Morse clusters at $\rho=8$. This report contains some algorithmic details as well as the structures determined with our method. Citation Technical Report DSI 3-2003, Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze, Firenze, 2003. Article Download View New global optima for Morse clusters … Read more

A fast swap-based local search procedure for location problems

We present a new implementation of a widely used swap-based local search procedure for the P-median problem, proposed in 1968 by Teitz and Bart. Our method produces the same output as the best alternatives described in the literature and, even though its worst-case complexity is similar, it can be significantly faster in practice: speedups of … Read more

Global and Convex Optimization in Modeling Environments: Compiler-Based, Excel, and Mathematica Implementations

We present a review of several software products that serve to analyze and solve nonlinear (specifically including global) optimization problems across different hardware and software platforms. The implementations discussed are LGO, as a stand-alone, but compiler-dependent modeling and solver environment; its Excel platform implementation; and MathOptimizer, a native solver package for Mathematica users. The discussion … Read more

The Inverse Optimal Value Problem

This paper considers the following inverse optimization problem: given a linear program, a desired optimal objective value, and a set of feasible cost coefficients, determine a cost-coefficient vector such that the corresponding optimal objective value of the linear program is closest to the given value. The above problem, referred here as the inverse optimal value … Read more