Modal occupation measures and LMI relaxations for nonlinear switched systems control

This paper presents a linear programming approach for the optimal control of nonlinear switched systems where the control is the switching sequence. This is done by introducing modal occupation measures, which allow to relax the problem as a primal linear programming (LP) problem. Its dual linear program of Hamilton-Jacobi-Bellman inequalities is also characterized. The LPs … Read more

The Slater Conundrum: Duality and Pricing in Infinite Dimensional Optimization

Duality theory is pervasive in finite dimensional optimization. There is growing interest in solving infinite-dimensional optimization problems and hence a corresponding interest in duality theory in infinite dimensions. Unfortunately, many of the intuitions and interpretations common to finite dimensions do not extend to infinite dimensions. In finite dimensions, a dual solution is represented by a … Read more

On Calmness of the Argmin Mapping in Parametric Optimization Problems

Recently, Canovas et. al. (2013) presented an interesting result: the argmin mapping of a linear semi-infinite program under canonical perturbations is calm if and only if some associated linear semi-infinite inequality system is calm. Using classical tools from parametric optimization, we show that the if-direction of this condition holds in a much more general framework … Read more

Confidence Levels for CVaR Risk Measures and Minimax Limits

Conditional value at risk (CVaR) has been widely used as a risk measure in finance. When the confidence level of CVaR is set close to 1, the CVaR risk measure approximates the extreme (worst scenario) risk measure. In this paper, we present a quantitative analysis of the relationship between the two risk measures and its … Read more

A semidefinite programming hierarchy for packing problems in discrete geometry

Packing problems in discrete geometry can be modeled as finding independent sets in infinite graphs where one is interested in independent sets which are as large as possible. For finite graphs one popular way to compute upper bounds for the maximal size of an independent set is to use Lasserre’s semidefinite programming hierarchy. We generalize … Read more

On Blocking and Anti-Blocking Polyhedra in Infinite Dimensions

We consider the natural generalizations of blocking and anti-blocking polyhedra in infinite dimensions, and study issues related to duality and integrality of extreme points for these sets. Using appropriate finite truncations, we give conditions under which complementary slackness holds for primal-dual pairs of the infi nite linear programming problems associated with infi nite blocking and anti-blocking polyhedra. … Read more

Primal-dual methods for solving infinite-dimensional games

In this paper we show that the infinite-dimensional differential games with simple objective functional can be solved in a finite-dimensional dual form in the space of dual multipliers for the constraints related to the end points of the trajectories. The primal solutions can be easily reconstructed by the appropriate dual subgradient schemes. The suggested schemes … Read more

Global Optimization of Generalized Semi-Infinite Programs via Restriction of the Right Hand Side

The algorithm proposed in [Mitsos Optimization 2011] for the global optimization of semi-infinite programs is extended to the global optimization of generalized semi-infinite programs (GSIP). No convexity or concavity assumptions are made. The algorithm employs convergent lower and upper bounds which are based on regular (in general nonconvex) nonlinear programs (NLP) solved by a (black-box) … Read more

A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization

We first present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems, and use it to develop an algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. The cutting surface algorithm is also applicable to problems with non-differentiable semi-infinite … Read more

A branch and bound approach for convex semi-infinite programming

In this paper we propose an efficient approach for globally solving a class of convex semi-infinite programming (SIP) problems. Under the objective function and constraints (w.r.t. the variables to be optimized) convexity assumption, and appropriate differentiability, we propose a branch and bound exchange type method for SIP. To compute a feasible point for a SIP … Read more