Improving a Formulation of the Quadratic Knapsack Problem

The Quadratic Knapsack Problem can be formulated, using an idea of Glover, as a mixed 0-1 linear program with only 2n variables. We present a simple method for strengthening that formulation, which gives good results when the profit matrix is dense and non-negative. CitationWorking Paper, Department of Management Science, Lancaster University, May 2007.ArticleDownload View PDF

A Computational Study of Exact Knapsack Separation for the Generalized Assignment Problem

The Generalized Assignment Problem is a well-known NP-hard combinatorial optimization problem which consists of minimizing the assignment costs a set of jobs to a set of machines satisfying capacity constraints. Most of the existing algorithms are based on Branch-and-Price, with lower bounds computed by Dantzig-Wolfe reformulation and column generation. In this paper we propose a … Read more

A Short Note on the Probabilistic Set Covering Problem

In this paper we address the following probabilistic version (PSC) of the set covering problem: min { cx | P (Ax>= xi) >= p, x_{j} in {0,1} j in N} where A is a 0-1 matrix, xi is a random 0-1 vector and p in (0,1] is the threshold probability level. In a recent development … Read more

Solving the uncapacitated facility location problem with semi-Lagrangian relaxation

The semi-Lagrangian Relaxation (SLR) method has been introduced in Beltran et al. (2006) to solve the p-median problem. In this paper we apply the method to the Uncapacitated Facility Location (UFL) problem. We perform computational experiments on two main collections of UFL problems with unknown optimal values. On one collection, we manage to solve to … Read more

MIP Reformulations of the Probabilistic Set Covering Problem

In this paper we address the following probabilistic version (PSC) of the set covering problem: $min \{ cx \ |\ {\mathbb P} (Ax\ge \xi) \ge p,\ x_{j}\in \{0,1\}^N\}$ where $A$ is a 0-1 matrix, $\xi$ is a random 0-1 vector and $p\in (0,1]$ is the threshold probability level. We formulate (PSC) as a mixed integer … Read more

Orbitopal Fixing

The topic of this paper are integer programming models in which a subset of 0/1-variables encode a partitioning of a set of objects into disjoint subsets. Such models can be surprisingly hard to solve by branch-and-cut algorithms if the permutation of the subsets of the partition is irrelevant. This kind of symmetry unnecessarily blows up … Read more

Orbital Branching

We introduce orbital branching, an effective branching method for integer programs containing a great deal of symmetry. The method is based on computing groups of variables that are equivalent with respect to the symmetry remaining in the problem after branching, including symmetry which is not present at the root node. These groups of equivalent variables, … Read more

Cardinality Cuts: New Cutting Planes for 0-1 Programming

We present new valid inequalities that work in similar ways to well known cover inequalities.The differences exist in three aspects. First difference is in the generation of the inequalities. The method used in generation of the new cuts is more practical in contrast to classical cover inequalities. Second difference is the more general applicability, i.e., … Read more

Copositive and Semidefinite Relaxations of the Quadratic Assignment Problem

Semidefinite relaxations of the quadratic assignment problem (QAP) have recently turned out to provide good approximations to the optimal value of QAP. We take a systematic look at various conic relaxations of QAP. We first show that QAP can equivalently be formulated as a linear program over the cone of completely positive matrices. Since it … Read more

Sequence independent lifting for 0-1 knapsack problems with disjoint cardinality constraints

In this paper, we study the set of 0-1 integer solutions to a single knapsack constraint and a set of non-overlapping cardinality constraints (MCKP). This set is a generalization of the traditional 0-1 knapsack polytope and the 0-1 knapsack polytope with generalized upper bounds. We derive strong valid inequalities for the convex hull of its … Read more