A robust approach to the chance-constrained knapsack problem

Chance-constrained programming is a relevant model for many concrete problems. However, it is known to be very hard to tackle directly. In this paper, the chance-constrained knapsack problem (CKP) is addressed. Relying on the recent advances in robust optimization, a tractable combinatorial algorithm is proposed to solve CKP. It always provides feasible solutions for CKP. … Read more

Clique-based facets for the precedence constrained knapsack problem

We consider a knapsack problem with precedence constraints imposed on pairs of items, known as the precedence constrained knapsack problem (PCKP). This problem has applications in management and machine scheduling, and also appears as a subproblem in decomposition techniques for network design and other related problems. We present a new approach for determining facets of … Read more

Dynamic Enumeration of All Mixed Cells

The polyhedral homotopy method, which has been known as a powerful numerical method for computing all isolated zeros of a polynomial system, requires all mixed cells of the support of the system to construct a family of homotopy functions. Finding the mixed cells is formulated in terms of a linear inequality system with an additional … Read more

A novel integer programming formulation for the K-SONET ring assignment problem

We consider the problem of interconnecting a set of customer sites using SONET rings of equal capacity, which can be defined as follows: Given an undirected graph G=(V,E) with nonnegative edge weight d(u,v), (u,v) in E, and two integers K and B, find a partition of the nodes of G into K subsets so that … Read more

A Near Maximum Likelihood Decoding Algorithm for MIMO Systems Based on Semi-Definite Programming

In Multi-Input Multi-Output (MIMO) systems, Maximum-Likelihood (ML) decoding is equivalent to finding the closest lattice point in an N-dimensional complex space. In general, this problem is known to be NP hard. In this paper, we propose a quasi-maximum likelihood algorithm based on Semi-Definite Programming (SDP). We introduce several SDP relaxation models for MIMO systems, with … Read more

An Explicit Semidefinite Characterization of Satisfiability for Tseitin Instances

This paper is concerned with the application of semidefinite programming to the satisfiability problem, and in particular with using semidefinite liftings to efficiently obtain proofs of unsatisfiability. We focus on the Tseitin satisfiability instances which are known to be hard for many proof systems. We present an explicit semidefinite programming problem with dimension linear in … Read more

Parsimonious Binary-Encoding in Integer Programming

We describe an effective method for doing binary-encoded modeling, in the context of 0/1 linear programming, when the number of feasible configurations is not a power of two. Our motivation comes from modeling all-different restrictions. Article Download View Parsimonious Binary-Encoding in Integer Programming

On separating cover inequalities for the multidimensional knapsack problem

We propose a simple and sufficiently fast separation procedure to identify cover inequalities for the multidimensional knapsack problem. It is based on the solution of a conventional integer programming model. Solving this kind of integer programs are usually considered expensive and the proposed method may have been overlooked because of this assumption. The results of … Read more

Approximate fixed-rank closures of set covering problems

We show that for any fixed rank, the closure of a set covering problem (and related problems) can be approximated in polynomial time — we can epsilon-approximate any linear program over the closure in polynomial time. Citation CORC report TR-2003-01, Computational Optimization Research Center, Columbia University Article Download View Approximate fixed-rank closures of set covering … Read more

Solving Lift-and-Project Relaxations of Binary Integer Programs

We propose a method for optimizing the lift-and-project relaxations of binary integer programs introduced by Lov\’asz and Schrijver. In particular, we study both linear and semidefinite relaxations. The key idea is a restructuring of the relaxations, which isolates the complicating constraints and allows for a Lagrangian approach. We detail an enhanced subgradient method and discuss … Read more