On Recognizing Staircase Compatibility

For the problem to find an m-clique in an m-partite graph, staircase compatibility has recently been introduced as a polynomial-time solvable special case. It is a property of a graph together with an m-partition of the vertex set and total orders on each subset of the partition. In optimization problems involving m-cliques in m-partite graphs … Read more

Compact mixed-integer programming relaxations in quadratic optimization

We present a technique for producing valid dual bounds for nonconvex quadratic optimization problems. The approach leverages an elegant piecewise linear approximation for univariate quadratic functions due to Yarotsky, formulating this (simple) approximation using mixed-integer programming (MIP). Notably, the number of constraints, binary variables, and auxiliary continuous variables used in this formulation grows logarithmically in … Read more

Multi-cover Inequalities for Totally-Ordered Multiple Knapsack Sets: Theory and Computation

We propose a method to generate cutting-planes from multiple covers of knapsack constraints. The covers may come from different knapsack inequalities if the weights in the inequalities form a totally-ordered set. Thus we introduce and study the structure of a totally-ordered multiple knapsack set. The valid multi-cover inequalities we derive for its convex hull have … Read more

Discrete Multi-Module Capacitated Lot-Sizing Problems with Multiple Items

We study single-item discrete multi-module capacitated lot-sizing problems where the amount produced in each time period is equal to the summation of binary multiples of the capacities of n available different modules (or machines). For fixed n≥2, we develop fixed-parameter tractable (polynomial) exact algorithms that generalize the algorithms of van Vyve (2007) for n=1. We … Read more

Mathematical Models and Approximate Solution Approaches for the Stochastic Bin Packing Problem

We consider the (single-stage) stochastic bin packing problem (SBPP) which is based on a given list of items the sizes of which are represented by stochastically independent random variables. The SBPP requires to determine the minimum number of unit capacity bins needed to pack all the items, such that for each bin the probability of … Read more

Routing and Wavelength Assignment with Protection: A Quadratic Unconstrained Binary Optimization Approach

The routing and wavelength assignment with protection is an important problem in telecommunications. Given an optical network and incoming connection requests, a commonly studied variant of the problem aims to grant maximum number of requests by assigning lightpaths at minimum network resource usage level, while ensuring the provided services remain functional in case of a … Read more

Convexifying Multilinear Sets with Cardinality Constraints: Structural Properties, Nested Case and Extensions

The problem of minimizing a multilinear function of binary variables is a well-studied NP-hard problem. The set of solutions of the standard linearization of this problem is called the multilinear set. We study a cardinality constrained version of it with upper and lower bounds on the number of nonzero variables. We call the set of … Read more

Branch-and-Bound Solves Random Binary IPs in Polytime

Branch-and-bound is the workhorse of all state-of-the-art mixed integer linear programming (MILP) solvers. These implementations of branch-and-bound typically use variable branching, that is, the child nodes are obtained by fixing some variable to an integer value v in one node and to v + 1 in the other node. Even though modern MILP solvers are … Read more

An Almost Exact Solution to the Min Completion Time Variance in a Single Machine

We consider a single machine scheduling problem to minimize the completion time variance of n jobs. This problem is known to be NP-hard and our contribution is to establish a novel bounding condition for a characterization of an optimal sequence. Specifically, we prove a necessary and sufficient condition (which can be verified in O(n\log n)) … Read more

An exact method for influence maximization based on deterministic linear threshold model

Influence maximization (IM) is a challenging combinatorial optimization problem on (social) networks given a diffusion model and limited choice for initial seed nodes. In a recent paper an integer programming formalization of IM using the so-called deterministic linear threshold diffusion model was proposed. In fact, it is a special 0-1 linear program in which the … Read more