The Submodular Knapsack Polytope

The submodular knapsack set is the discrete lower level set of a submodular function. The modular case reduces to the classical linear 0-1 knapsack set. One motivation for studying the submodular knapsack polytope is to address 0-1 programming problems with uncertain coefficients. Under various assumptions, a probabilistic constraint on 0-1 variables can be modeled as … Read more

Two Row Mixed Integer Cuts Via Lifting

Recently, Andersen et al.(2007), Borozan and Cornuejols (2007) and Cornuejols and Margot(2007) characterized extreme inequalities of a system of two rows with two free integer variables and nonnegative continuous variables. These inequalities are either split cuts or intersection cuts (Balas (1971)) derived using maximal lattice-free convex sets. In order to use these inequalities to obtain … Read more

Separation of Mixing Inequalities in a Mixed Integer Programming Solver

This paper shows how valid inequalities based on the mixing set can be used in a mixed integer programming (MIP) solver. It discusses the relation of mixing inequalities to flow path and mixed integer rounding in- equalities and how currently used separation algorithms already generate cuts implicitly that can be seen as mixing cuts. Further … Read more

Computational testing of exact mixed knapsack separation for MIP problems

In this paper we study an exact separation algorithm for mixed knapsack sets with the aim of evaluating its effectiveness in a cutting plane algorithm for Mixed-Integer Programming. First proposed by Boyd in the 90’s, exact knapsack separation has recently found a renewed interest. In this paper we present a “lightweight” exact separation procedure for … Read more

Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Random Recourse

This paper introduces disjunctive decomposition for two-stage mixed 0-1 stochastic integer programs (SIPs) with random recourse. Disjunctive decomposition allows for cutting planes based on disjunctive programming to be generated for each scenario subproblem under a temporal decomposition setting of the SIP problem. A new class of valid inequalities for mixed 0-1 SIP with random recourse … Read more

Solving the Prize-collecting Rural Postman Problem

In this work we present an algorithm for solving the Prize-collecting Rural Postman Problem. This problem was recently defined and is a generalization of other arc routing problems like, for instance, the Rural Postman Problem. The main difference is that there are no required edges. Instead, there is a profit function on the edges that … Read more

A partitioning algorithm for the network loading problem

This paper proposes a Benders-like partitioning algorithm to solve the network loading problem. The effort of computing integer solutions is entirely left to a pure integer programming solver while valid inequalities are generated by solving standard nonlinear multicommodity flow problems. The method is compared to alternative approaches proposed in the literature and appears to be … Read more

Single-layer Cuts for Multi-layer Network Design Problems

We study a planning problem arising in SDH/WDM multi-layer telecommunication network design. The goal is to find a minimum cost installation of link and node hardware of both network layers such that traffic demands can be realized via grooming and a survivable routing. We present a mixed-integer programming formulation that takes many practical side constraints … Read more

Algorithms to Separate {0,1/2}-Chvatal-Gomory Cuts

Chvatal-Gomory cuts are among the most well-known classes of cutting planes for general integer linear programs (ILPs). In case the constraint multipliers are either 0 or 1/2, such cuts are known as {0, 1/2}-cuts. It has been proven by Caprara and Fischetti (1996) that separation of {0, 1/2}-cuts is NP-hard. In this paper, we study … Read more