Strongly Agree or Strongly Disagree?: Rating Features in Support Vector Machines

In linear classifiers, such as the Support Vector Machine (SVM), a score is associated with each feature and objects are assigned to classes based on the linear combination of the scores and the values of the features. Inspired by discrete psychometric scales, which measure the extent to which a factor is in agreement with a … Read more

Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service System Staffing and Scheduling with Arrival Rate Uncertainty

We study server scheduling in multiclass service systems under stochastic uncertainty in the customer arrival volumes. Common practice in such systems is to first identify staffing levels, and then determine schedules for the servers that cover these targets. We propose a new stochastic integer programming model that integrates these two decisions, which can yield lower … Read more

A pseudo-polynomial size formulation for 2-stage two-dimensional knapsack problems

Two dimensional cutting problems are about obtaining a set of rectangular items from a set of rectangular stock pieces and are of great relevance in industry, whenever a sheet of wood, metal or other material has to be cut. In this paper, we consider the 2-stage two-dimensional knapsack (2TDK) problem which requires finding the maximum … Read more

A novel passenger recovery approach for the integrated airline recovery problem

Schedule disruptions require airlines to intervene through the process of recovery; this involves modifications to the planned schedule, aircraft routings, crew pairings and passenger itineraries. Passenger recovery is generally considered as the final stage in this process, and hence passengers experience unnecessarily large impacts resulting from flight delays and cancellations. Most recovery approaches considering passengers … Read more

Scheduling optimization of a real flexible job shop including side constraints regarding maintenance, fixtures, and night shifts

We present a generic iterative scheduling procedure for the scheduling of a real flexible job shop, the so-called multitask cell at GKN Aerospace Engine Systems in Sweden. A time-indexed formulation of the problem is presented including side constraints regarding preventive maintenance, fixture availability, and unmanned night shifts. This paper continues the work in Thörnblad et … Read more

A competitive iterative procedure using a time-indexed model for solving flexible job shop scheduling problems

We investigate the efficiency of a discretization procedure utilizing a time-indexed mathematical optimization model for finding accurate solutions to flexible job shop scheduling problems considering objectives comprising the makespan and the tardiness of jobs, respectively. The time-indexed model is used to find solutions to these problems by iteratively employing time steps of decreasing length. The … Read more

Improving the LP bound of a MILP by dual concurrent branching and the relationship to cut generation methods

In this paper branching for attacking MILP is investigated. Under certain circumstances branches can be done concurrently. By introducing a new calculus it is shown there are restrictions for dual values. As a second result of this study a new class of cuts for MILP is found, which are defined by those values. This class … Read more

A fix-and-relax heuristic for controlled tabular adjustment

Controlled tabular adjustment (CTA) is an emerging protection technique for tabular data protection. CTA formulates a mixed integer linear programming problem, which is tough for tables of moderate size. Finding a feasible initial solution may even be a challenging task for large instances. On the other hand, end users of tabular data protection techniques give … Read more

Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems

Robust optimization is a methodology that has gained a lot of attention in the recent years. This is mainly due to the simplicity of the modeling process and ease of resolution even for large scale models. Unfortunately, the second property is usually lost when the cost function that needs to be robustified is not concave … Read more

Using diversification, communication and parallelism to solve mixed-integer linear programs

Performance variability of modern mixed-integer programming solvers and possible ways of exploiting this phenomenon present an interesting opportunity in the development of algorithms to solve mixed-integer linear programs (MILPs). We propose a framework using multiple branch-and-bound trees to solve MILPs while allowing them to share information in a parallel execution. We present computational results on … Read more