Sell or Hold: a simple two-stage stochastic combinatorial optimization problem

There are $n$ individual assets and $k$ of them are to be sold over two stages. The first-stage prices are known and the second-stage prices have a known distribution. The sell or hold problem (SHP) is to determine which assets are to be sold at each stage to maximize the total expected revenue. We show … Read more

Probabilistic Set Covering with Correlations

We consider a probabilistic set covering problem where there is uncertainty regarding whether a selected set can cover an item, and the objective is to determine a minimum-cost combination of sets so that each item is covered with a pre-specified probability. To date, literature on this problem has focused on the special case in which … Read more

Algorithimic and Complexity Results for Cutting Planes Derived from Maximal Lattice-Free Convex Sets

We study a mixed integer linear program with $m$ integer variables and $k$ non-negative continuous variables in the form of the relaxation of the corner polyhedron that was introduced by Andersen, Louveaux, Weismantel and Wolsey [\emph{Inequalities from two rows of a simplex tableau}, Proc.\ IPCO 2007, LNCS, vol.~4513, Springer, pp.~1–15]. We describe the facets of … Read more

Complexity results for the gap inequalities for the max-cut problem

In 1996, Laurent and Poljak introduced an extremely general class of cutting planes for the max-cut problem, called gap inequalities. We prove several results about them, including the following: (i) there must exist non-dominated gap inequalities with gap larger than 1, unless NP = co-NP; (ii) there must exist non-dominated gap inequalities with exponentially large … Read more

On the generation of symmetry breaking constraints for mathematical programs

Mathematical programs whose formulation is symmetric often take a long time to solve using Branch-and-Bound type algorithms, because of the several symmetric optima. One of the techniques used to decrease the adverse effects of symmetry is adjoining symmetry breaking constraints to the formulation before solving the problem. These constraints aim to make some of the … Read more

Strong Dual for Conic Mixed-Integer Programs

Mixed-integer conic programming is a generalization of mixed-integer linear programming. In this paper, we present an extension of the duality theory for mixed-integer linear programming to the case of mixed-integer conic programming. In particular, we construct a subadditive dual for mixed-integer conic programming problems. Under a simple condition on the primal problem, we are able … Read more

Column Generation for Extended Formulations

Working in an extended variable space allows one to develop tight reformulations for mixed integer programs. However, the size of the extended formulation grows rapidly too large for a direct treatment by a MIP-solver. Then, one can use projection tools and derive valid inequalities for the original formulation, or consider an approximate extended formulation (f.i., … Read more

Solving Mixed Integer Bilinear Problems using MILP formulations

In this paper, we examine a mixed integer linear programming (MIP) reformulation for mixed integer bilinear problems where each bilinear term involves the product of a nonnegative integer variable and a nonnegative continuous variable. This reformulation is obtained by first replacing a general integer variable with its binary expansion and then using McCormick envelopes to … Read more

Coordinated cutting plane generation via multi-objective separation

In cutting plane methods, the question of how to generate the “best possible” set of cuts is both central and crucial. We propose a lexicographic multi-objective cutting plane generation scheme that generates, among all the maximally violated valid inequalities of a given family, an inequality that is undominated and maximally diverse w.r.t. the cuts that … Read more

Computational Experiments with Cross and Crooked Cross Cuts

In a recent paper, Dash, Dey and Gunluk (2010) showed that many families of inequalities for the two-row continuous group relaxation and variants of this relaxation are cross cuts or crooked cross cuts, both of which generalize split cuts. Li and Richard (2008) recently studied t-branch split cuts for mixed-integer programs for integers t >= … Read more