Semidefinite Relaxations for Non-Convex Quadratic Mixed-Integer Programming

We present semidefinite relaxations for unconstrained non-convex quadratic mixed-integer optimization problems. These relaxations yield tight bounds and are computationally easy to solve for medium-sized instances, even if some of the variables are integer and unbounded. In this case, the problem contains an infinite number of linear constraints; these constraints are separated dynamically. We use this … Read more

An Effective Branch-and-Bound Algorithm for Convex Quadratic Integer Programming

We present a branch-and-bound algorithm for minimizing a convex quadratic objective function over integer variables subject to convex constraints. In a given node of the enumeration tree, corresponding to the fixing of a subset of the variables, a lower bound is given by the continuous minimum of the restricted objective function. We improve this bound … Read more

Inclusion Certificates and Simultaneous Convexification of Functions

We define the inclusion certificate as a measure that expresses each point in the domain of a collection of functions as a convex combination of other points in the domain. Using inclusion certificates, we extend the convex extensions theory to enable simultaneous convexification of functions. We discuss conditions under which the domain of the functions … Read more

A polynomial case of cardinality constrained quadratic optimization problem

We investigate in this paper a fixed parameter polynomial algorithm for the cardinality constrained quadratic optimization problem, which is NP-hard in general. More specifically, we prove that, given a problem of size $n$, the number of decision variables, and $s$, the cardinality, if, for some $0

Some Results on the Strength of Relaxations of Multilinear Functions

We study approaches for obtaining convex relaxations of global optimization problems containing multilinear functions. Specifically, we compare the concave and convex envelopes of these functions with the relaxations that are obtained with a standard relaxation approach, due to McCormick. The standard approach reformulates the problem to contain only bilinear terms and then relaxes each term … Read more

On semidefinite programming relaxations of maximum k-section

We derive a new semidefinite programming bound for the maximum k-section problem. For k=2 (i.e. for maximum bisection), the new bound is least as strong as the well-known bound by Frieze and Jerrum [A. Frieze and M. Jerrum. Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION. Algorithmica, 18(1): 67-81, 1997]. For k > 2 … Read more

Cutting Stock with Bounded Open Stacks: a New Integer Linear Programming Model

We address a 1-dimensional cutting stock problem where, in addition to trim-loss minimization, we require that the set of cutting patterns forming the solution can be sequenced so that the number of stacks of parts maintained open throughout the process never exceeds a given $s$. For this problem, we propose a new integer linear programming … Read more

New concave penalty functions for improving the Feasibility Pump

Mixed-Integer optimization represents a powerful tool for modeling many optimization problems arising from real-world applications. The Feasibility pump is a heuristic for finding feasible solutions to mixed integer linear problems. In this work, we propose a new feasibility pump approach using concave non-differentiable penalty functions for measuring solution integrality. We present computational results on binary … Read more

Coverings and Matchings in r-Partite Hypergraphs

Ryser’s conjecture postulates that, for $r$-partite hypergraphs, $\tau \leq (r-1) \nu$ where $\tau$ is the covering number of the hypergraph and $\nu$ is the matching number. Although this conjecture has been open since the 1960s, researchers have resolved it for special cases such as for intersecting hypergraphs where $r \leq 5$. In this paper, we … Read more

A Faster Algorithm for Quasi-convex Integer Polynomial Optimization

We present a faster exponential-time algorithm for integer optimization over quasi-convex polynomials. We study the minimization of a quasi-convex polynomial subject to s quasi-convex polynomial constraints and integrality constraints for all variables. The new algorithm is an improvement upon the best known algorithm due to Heinz (Journal of Complexity, 2005). A lower time complexity is … Read more