Constraint Orbital Branching

Orbital branching is a method for branching on variables in integer programming that reduces the likelihood of evaluating redundant, isomorphic nodes in the branch-and-bound procedure. In this work, the orbital branching methodology is extended so that the branching disjunction can be based on an arbitrary constraint. Many important families of integer programs are structured such … Read more

Parallel Approximation, and Integer Programming Reformulation

We analyze two integer programming reformulations of the n-dimensional knapsack feasibility problem without assuming any structure on the weight vector $a.$ Both reformulations have a constraint matrix in which the columns form a reduced basis in the sense of Lenstra, Lenstra, and Lov\’asz. The nullspace reformulation of Aardal, Hurkens and Lenstra has n-1 variables, and … Read more

Polymatroids and Mean-Risk Minimization in Discrete Optimization

In financial markets high levels of risk are associated with large returns as well as large losses, whereas with lower levels of risk, the potential for either return or loss is small. Therefore, risk management is fundamentally concerned with finding an optimal trade-off between risk and return matching an investor’s risk tolerance. Managing risk is … Read more

Mingling: Mixed-Integer Rounding with Bounds

Mixed-integer rounding (MIR) is a simple, yet powerful procedure for generating valid inequalities for mixed-integer programs. When used as cutting planes, MIR inequalities are very effective for problems with unbounded integer variables. For problems with bounded integer variables, however, cutting planes based on lifting techniques appear to be more effective. This is not surprising as … Read more

Lifting for Conic Mixed-Integer Programming

Lifting is a procedure for deriving valid inequalities for mixed-integer sets from valid inequalities for suitable restrictions of those sets. Lifting has been shown to be very effective in developing strong valid inequalities for linear integer programming and it has been successfully used to solve such problems with branch-and-cut algorithms. Here we generalize the theory … Read more

Solving chance-constrained combinatorial problems to optimality

The aim of this paper is to provide new efficient methods for solving general chance-constrained integer linear programs to optimality. Valid linear inequalities are given for these problems. They are proved to characterize properly the set of solutions. They are based on a specific scenario, whose definition impacts strongly on the quality of the linear … Read more

Approximating the Stability Region for Binary Mixed-Integer Programs

We consider optimization problems with some binary variables, where the objective function is linear in these variables. The stability region of a given solution of such a problem is the polyhedral set of objective coefficients for which the solution is optimal. A priori knowledge of this set provides valuable information for sensitivity analysis and re-optimization … Read more

Solving the Prize-collecting Rural Postman Problem

In this work we present an algorithm for solving the Prize-collecting Rural Postman Problem. This problem was recently defined and is a generalization of other arc routing problems like, for instance, the Rural Postman Problem. The main difference is that there are no required edges. Instead, there is a profit function on the edges that … Read more

A partitioning algorithm for the network loading problem

This paper proposes a Benders-like partitioning algorithm to solve the network loading problem. The effort of computing integer solutions is entirely left to a pure integer programming solver while valid inequalities are generated by solving standard nonlinear multicommodity flow problems. The method is compared to alternative approaches proposed in the literature and appears to be … Read more

A new, solvable, primal relaxation for nonlinear integer programming problems with linear constraints

This paper describes a new primal relaxation for nonlinear integer programming problems with linear constraints. This relaxation, contrary to the standard Lagrangean relaxation, can be solved efficiently. It requires the solution of a nonlinear penalized problem whose linear constraint set is known only implicitly, but whose solution is made possible by the use of a … Read more