Sequence independent lifting for 0-1 knapsack problems with disjoint cardinality constraints

In this paper, we study the set of 0-1 integer solutions to a single knapsack constraint and a set of non-overlapping cardinality constraints (MCKP). This set is a generalization of the traditional 0-1 knapsack polytope and the 0-1 knapsack polytope with generalized upper bounds. We derive strong valid inequalities for the convex hull of its … Read more

Cutting planes for multi-stage stochastic integer programs

This paper addresses the problem of finding cutting planes for multi-stage stochastic integer programs. We give a general method for generating cutting planes for multi-stage stochastic integer programs based on combining inequalities that are valid for the individual scenarios. We apply the method to generate cuts for a stochastic version of a dynamic knapsack problem … Read more

Two step MIR inequalities for mixed-integer programs

Two-step mixed-integer rounding inequalities are valid inequalities derived from a facet of a simple mixed-integer set with three variables and one constraint. In this paper we investigate how to effectively use these inequalities as cutting planes for general mixed-integer problems. We study the separation problem for single constraint sets and show that it can be … Read more

Generalized Mixed Integer Rounding Valid Inequalities

We present new families of valid inequalities for (mixed) integer programming (MIP) problems. These valid inequalities are based on a generalization of the 2-step mixed integer rounding (MIR), proposed by Dash and Günlük (2006). We prove that for any positive integer n, n facets of a certain (n+1)-dimensional mixed integer set can be obtained through … Read more

On the strength of Gomory mixed-integer cuts as group cuts

Gomory mixed-integer (GMI) cuts generated from optimal simplex tableaus are known to be useful in solving mixed-integer programs. Further, it is well-known that GMI cuts can be derived from facets of Gomory’s master cyclic group polyhedron and its mixed-integer extension studied by Gomory and Johnson. In this paper we examine why cutting planes derived from … Read more

Linear Programming Based Lifting and its Application to Primal Cutting Plane Algorithms

We propose an approximate lifting procedure for general integer programs. This lifting procedure uses information from multiple constraints of the problem formulation and can be used to strengthen formulations and cuts for mixed integer programs. In particular we demonstrate how it can be applied to improve Gomory’s fractional cut which is central to Glover’s primal … Read more

Uncapacitated Lot Sizing with Backlogging: The Convex Hull

An explicit description of the convex hull of solutions to the uncapacitated lot-sizing problem with backlogging, in its natural space of production, setup, inventory and backlogging variables, has been an open question for many years. In this paper, we identify facet-defining inequalities that subsume all previously known valid inequalities for this problem. We show that … Read more

The extreme points of QSTAB(G) and its implications

Perfect graphs constitute a well-studied graph class with a rich structure, reflected by many characterizations w.r.t different concepts. Perfect graphs are, e.g., characterized as precisely those graphs G where the stable set polytope STAB(G) coincides with the clique constraint stable set polytope QSTAB(G). For all imperfect graphs STAB(G) \subset QSTAB(G) holds and, therefore, it is … Read more

Robust Branch-Cut-and-Price for the Capacitated Minimum Spanning Tree Problem over a Large Extended Formulation

This paper presents a robust branch-cut-and-price algorithm for the Capacitated Minimum Spanning Tree Problem (CMST). The variables are associated to $q$-arbs, a structure that arises from a relaxation of the capacitated prize-collecting arborescence probem in order to make it solvable in pseudo-polynomial time. Traditional inequalities over the arc formulation, like Capacity Cuts, are also used. … Read more

New Inequalities for Finite and Infinite Group Problems from Approximate Lifting

In this paper, we derive new families of piecewise linear facet-defining inequalities for the finite group problem and extreme inequalities for the infinite group problem using approximate lifting. The new valid inequalities for the finite group problem are two- and three-slope facet-defining inequalities as well as the first family of four-slope facet-defining inequalities. The new … Read more