Prescriptive price optimization using optimal regression trees

This paper focuses on prescriptive price optimization, which derives the optimal pricing strategy that maximizes future revenue or profit by using demand forecasting models for multiple products. Prescriptive price optimization requires accurate demand forecasting models because the accuracy of these models has a direct impact on pricing strategies aimed at increasing revenue or profit. However, … Read more

Generating balanced workload allocations in hospitals

As pressure on healthcare systems continues to increase, it is becoming more and more important for hospitals to properly manage the high workload levels of their staff. Ensuring a balanced workload allocation between various groups of employees in a hospital has been shown to contribute considerably towards creating sustainable working conditions. However, allocating work to … Read more

Gas Transport Network Optimization: Mixed-Integer Nonlinear Models

Although modern societies strive towards energy systems that are entirely based on renewable energy carriers, natural gas is still one of the most important energy sources. This became even more obvious in Europe with Russia’s 2022 war against the Ukraine and the resulting stop of gas supplies from Russia. Besides that it is very important … Read more

Solving Unsplittable Network Flow Problems with Decision Diagrams

In unsplittable network flow problems, certain nodes must satisfy a combinatorial requirement that the incoming arc flows cannot be split or merged when routed through outgoing arcs. This so-called “no-split no-merge” requirement arises in unit train scheduling where train consists should remain intact at stations that lack necessary equipment and manpower to attach/detach them. Solving … Read more

Tightening Quadratic Convex Relaxations for the Alternating Current Optimal Transmission Switching Problem

The Alternating Current Optimal Transmission Switching (ACOTS) problem incorporates line switching decisions into the AC Optimal Power Flow (ACOPF) framework, offering well-known benefits in reducing operational costs and enhancing system reliability. ACOTS optimization models contain discrete variables and nonlinear, non-convex constraints, which make it difficult to solve. In this work, we develop strengthened quadratic convex … Read more

Global Optimization of Mixed-Integer Nonlinear Programs with SCIP 8.0

For over ten years, the constraint integer programming framework SCIP has been extended by capabilities for the solution of convex and nonconvex mixed-integer nonlinear programs (MINLPs). With the recently published version 8.0, these capabilities have been largely reworked and extended. This paper discusses the motivations for recent changes and provides an overview of features that … Read more

A Branch and Bound Algorithm for Biobjective Mixed Integer Quadratic Programs

Multiobjective quadratic programs (MOQPs) are appealing since convex quadratic programs have elegant mathematical properties and model important applications. Adding mixed-integer variables extends their applicability while the resulting programs become global optimization problems. We design and implement a branch and bound (BB) algorithm for biobjective mixed-integer quadratic programs (BOMIQPs). In contrast to the existing algorithms in … Read more

Handling Symmetries in Mixed-Integer Semidefinite Programs

Symmetry handling is a key technique for reducing the running time of branch-and-bound methods for solving mixed-integer linear programs. In this paper, we generalize the notion of (permutation) symmetries to mixed-integer semidefinite programs (MISDPs). We first discuss how symmetries of MISDPs can be automatically detected by finding automorphisms of a suitably colored auxiliary graph. Then … Read more

Handling Sub-symmetry in Integer Programming using Activation Handlers

Symmetry in integer programs (IPs) can be exploited in order to reduce solving times. Usually only symmetries of the original IP are handled, but new symmetries may arise at some nodes of the branch-and-bound tree. While symmetry-handling inequalities (SHIs) can easily be used to handle original symmetries, handling sub-symmetries arising later on is more intricate. … Read more