Single Allocation Hub Location with Heterogeneous Economies of Scale

We study the single allocation hub location problem with heterogeneous economies of scale (SAHLP-h). The SAHLP-h is a generalization of the classical single allocation hub location problem (SAHLP), in which the hub-hub connection costs are piecewise linear functions of the amounts of flow. We model the problem as an integer non-linear program, which we then … Read more

Exact Solution Approaches for Integer Linear Generalized Maximum Multiplicative Programs Through the Lens of Multi-objective Optimization

We study a class of single-objective nonlinear optimization problems, the so-called Integer Linear Generalized Maximum Multiplicative Programs (IL-GMMP). This class of optimization problems has a significant number of applications in different fields of study including but not limited to game theory, systems reliability, and conservative planning. An IL-GMMP can be reformulated as a mixed integer … Read more

On Mixed-Integer Optimal Control with Constrained Total Variation of the Integer Control

The combinatorial integral approximation (CIA) decomposition suggests to solve mixed-integer optimal control problems (MIOCPs) by solving one continuous nonlinear control problem and one mixed-integer linear program (MILP). Unrealistic frequent switching can be avoided by adding a constraint on the total variation to the MILP. Within this work, we present a fast heuristic way to solve … Read more

A counterexample to an exact extended formulation for the single-unit commitment problem

Recently, Guan, Pan, and Zohu presented a MIP model for the thermal single- unit commitment claiming that provides an integer feasible solution for any convex cost function. In this note we provide a counterexample to this statement and we produce evidence that the perspective function is needed for this aim. Citation Research Report 19-03, Istituto … Read more

New MINLP Formulations for the Unit Commitment Problems with Ramping Constraints

The Unit Commitment (UC) problem in electrical power production requires to optimally operate a set of power generation units over a short time horizon (one day to a week). Operational constraints of each unit depend on its type (e.g., thermal, hydro, nuclear, …), and can be rather complex. For thermal units, typical ones concern minimum … Read more

Experimental operation of a solar-driven climate system with thermal energy storages using mixed-integer nonlinear MPC

This work presents the results of experimental operation of a solar-driven climate system using mixed-integer nonlinear Model Predictive Control (MPC). The system is installed in a university building and consists of two solar thermal collector fields, an adsorption cooling machine with different operation modes, a stratified hot water storage with multiple inlets and outlets as … Read more

Stochastic Discrete First-order Algorithm for Feature Subset Selection

This paper addresses the problem of selecting a significant subset of candidate features to use for multiple linear regression. Bertsimas et al. (2016) recently proposed the discrete first-order (DFO) algorithm to efficiently find near-optimal solutions to this problem. However, this algorithm is unable to escape from locally optimal solutions. To resolve this, we propose a … Read more

Template-based Minor Embedding for Adiabatic Quantum Optimization

Quantum Annealing (QA) can be used to quickly obtain near-optimal solutions for Quadratic Unconstrained Binary Optimization (QUBO) problems. In QA hardware, each decision variable of a QUBO should be mapped to one or more adjacent qubits in such a way that pairs of variables defining a quadratic term in the objective function are mapped to … Read more

A geometric way to build strong mixed-integer programming formulations

We give an explicit geometric way to build mixed-integer programming (MIP) formulations for unions of polyhedra. The construction is simply described in terms of spanning hyperplanes in an r-dimensional linear space. The resulting MIP formulation is ideal, and uses exactly r integer variables and 2 x (# of spanning hyperplanes) general inequality constraints. We use … Read more

Joint chance-constrained programs and the intersection of mixing sets through a submodularity lens

A particularly important substructure in modeling joint linear chance-constrained programs with random right-hand sides and finite sample space is the intersection of mixing sets with common binary variables (and possibly a knapsack constraint). In this paper, we first revisit basic mixing sets by establishing a strong and previously unrecognized connection to submodularity. In particular, we … Read more