Clairvoyant Restarts in Branch-and-Bound Search Using Online Tree-Size Estimation

We propose a simple and general online method to measure the search progress within the Branch-and-Bound algorithm, from which we estimate the size of the remaining search tree. We then show how this information can help solvers algorithmically at runtime by designing a restart strategy for Mixed-Integer Programming (MIP) solvers that decides whether to restart … Read more

A Framework for Peak Shaving Through the Coordination of Smart Homes

In demand–response programs, aggregators balance the needs of generation companies and end-users. This work proposes a two-phase framework that shaves the aggregated peak loads while maintaining the desired comfort level for users. In the first phase, the users determine their planned consumption. For the second phase, we develop a bilevel model with mixed-integer variables and … Read more

Risk Aversion to Parameter Uncertainty in Markov Decision Processes with an Application to Slow-Onset Disaster Relief

In classical Markov Decision Processes (MDPs), action costs and transition probabilities are assumed to be known, although an accurate estimation of these parameters is often not possible in practice. This study addresses MDPs under cost and transition probability uncertainty and aims to provide a mathematical framework to obtain policies minimizing the risk of high long-term … Read more

A Computational Comparison of Optimization Methods for the Golomb Ruler Problem

The Golomb ruler problem is defined as follows: Given a positive integer n, locate n marks on a ruler such that the distance between any two distinct pair of marks are different from each other and the total length of the ruler is minimized. The Golomb ruler problem has applications in information theory, astronomy and … Read more

Identifying the Optimal Value Function of a Negative Markov Decision Process: An Integer Programming Approach

Mathematical programming formulation to identify the optimal value function of a negative Markov decision process (MDP) is non-convex, non-smooth, and computationally intractable. Also note that other well-known solution methods of MDP do not work properly for a negative MDP. More specifically, the policy iteration diverges, and the value iteration converges but does not provide an … Read more

Algorithms for the circle packing problem based on mixed-integer DC programming

Circle packing problems are a class of packing problems which attempt to pack a given set of circles into a container with no overlap. In this paper, we focus on the circle packing problem proposed by L{\’o}pez et.al. The problem is to pack circles of unequal size into a fixed size circular container, so as … Read more

Improved Flow-based Formulations for the Skiving Stock Problem

Thanks to the rapidly advancing development of (commercial) MILP software and hardware components, pseudo-polynomial formulations have been established as a powerful tool for solving cutting and packing problems in recent years. In this paper, we focus on the one-dimensional skiving stock problem (SSP), where a given inventory of small items has to be recomposed to … Read more

Conflict-Driven Heuristics for Mixed Integer Programming

Two essential ingredients of modern mixed-integer programming (MIP) solvers are diving heuristics that simulate a partial depth-first search in a branch-and-bound search tree and conflict analysis of infeasible subproblems to learn valid constraints. So far, these techniques have mostly been studied independently: primal heuristics under the aspect of finding high-quality feasible solutions early during the … Read more

A scalable mixed-integer decomposition approach for optimal power system restoration

The optimal restoration problem lies at the foundation of the evaluation and improvement of resilience in power systems. In this paper we present a scalable decomposition algorithm, based on the integer L-shaped method, for solving this problem for realistic power systems. The algorithm works by partitioning the problem into a master problem and a slave … Read more

Learning to Project in Multi-Objective Binary Linear Programming

In this paper, we investigate the possibility of improving the performance of multi-objective optimization solution approaches using machine learning techniques. Specifically, we focus on multi-objective binary linear programs and employ one of the most effective and recently developed criterion space search algorithms, the so-called KSA, during our study. This algorithm computes all nondominated points of … Read more