Semidefinite hierarchies for diagonal unitary invariant bipartite quantum states

We investigate questions about the cone \(\mathrm{SEP}_n\) of separable bipartite states, consisting of the Hermitian matrices acting on \(\mathbb{C}^n\otimes\mathbb{C}^n\) that can be written as conic combinations of rank one matrices of the form \(xx^*\otimes yy^*\) with \(x,y\in\mathbb{C}^n\). Bipartite states that are not separable are said to be entangled. Detecting quantum entanglement is a fundamental task … Read more

Density, Determinacy, Duality and a Regularized Moment-SOS Hierarchy

The standard moment-sum-of-squares (SOS) hierarchy is a powerful method for solving global polynomial optimization problems. However, its convergence relies on Putinar’s Positivstellensatz, which requires the feasible set to satisfy the algebraic Archimedean property. In this paper, we introduce a regularized moment-SOS hierarchy capable of handling problems on unbounded sets or bounded sets violating the Archimedean … Read more

A Dual Riemannian ADMM Algorithm for Low-Rank SDPs with Unit Diagonal

This paper proposes a dual Riemannian alternating direction method of multipliers (ADMM) for solving low-rank semidefinite programs with unit diagonal constraints. We recast the ADMM subproblem as a Riemannian optimization problem over the oblique manifold by performing the Burer-Monteiro factorization. Global convergence of the algorithm is established assuming that the subproblem is solved to certain … Read more

Semidefinite programming via Projective Cutting Planes for dense (easily-feasible) instances

The cone of positive semi-definite (SDP) matrices can be described by an infinite number of linear constraints. It is well-known that one can optimize over such a feasible area by standard Cutting Planes, but work on this idea remains a rare sight, likely due to its limited practical appeal compared to Interior Point Methods (IPMs). … Read more

Sparse Multiple Kernel Learning: Alternating Best Response and Semidefinite Relaxations

We study Sparse Multiple Kernel Learning (SMKL), which is the problem of selecting a sparse convex combination of prespecified kernels for support vector binary classification. Unlike prevailing \(\ell_1\)‐regularized approaches that approximate a sparsifying penalty, we formulate the problem by imposing an explicit cardinality constraint on the kernel weights and add an \(\ell_2\) penalty for robustness. … Read more

The SCIP Optimization Suite 10.0

The SCIP Optimization Suite provides a collection of software packages for mathematical optimization, centered around the constraint integer programming (CIP) framework SCIP. This report discusses the enhancements and extensions included in SCIP Optimization Suite 10.0. The updates in SCIP 10.0 include a new solving mode for exactly solving rational mixed-integer linear programs, a new presolver … Read more

Column Generation for Generalized Min-Cost Flows with Losses

The generalized flow problem deals with flows through a network with losses or gains along the arcs. Motivated by energy networks, this paper concentrates on the case with losses along cycles. Such networks can become extremely large, mostly because they are considered over large time horizons. We therefore develop a column generation approach for a … Read more

On the Convexification of a Class of Mixed-Integer Conic Sets

We investigate mixed-integer second-order conic (SOC) sets with a nonlinear right-hand side in the SOC constraint, a structure frequently arising in mixed-integer quadratically constrained programming (MIQCP). Under mild assumptions, we show that the convex hull can be exactly described by replacing the right-hand side with its concave envelope. This characterization enables strong relaxations for MIQCPs … Read more

Inexact subgradient algorithm with a non-asymptotic convergence guarantee for copositive programming problems

In this paper, we propose a subgradient algorithm with a non-asymptotic convergence guarantee to solve copositive programming problems. The subproblem to be solved at each iteration is a standard quadratic programming problem, which is NP-hard in general. However, the proposed algorithm allows this subproblem to be solved inexactly. For a prescribed accuracy $\epsilon > 0$ … Read more

A Practical Adaptive Subgame Perfect Gradient Method

We present a performant gradient method for smooth convex optimization, drawing inspiration from several recent advances in the field. Our algorithm, the Adaptive Subgame Perfect Gradient Method (ASPGM) is based on the notion of subgame perfection, attaining a dynamic strengthening of minimax optimality. At each iteration, ASPGM makes a momentum-type update, optimized dynamically based on … Read more