A Pure L1-norm Principal Component Analysis

The L1 norm has been applied in numerous variations of principal component analysis (PCA). L1-norm PCA is an attractive alternative to traditional L2-based PCA because it can impart robustness in the presence of outliers and is indicated for models where standard Gaussian assumptions about the noise may not apply. Of all the previously-proposed PCA schemes … Read more

On Duality Gap in Binary Quadratic Programming

We present in this paper new results on the duality gap between the binary quadratic optimization problem and its Lagrangian dual or semidefinite programming relaxation. We first derive a necessary and sufficient condition for the zero duality gap and discuss its relationship with the polynomial solvability of the primal problem. We then characterize the zeroness … Read more

On the Effectiveness of Projection Methods for Convex Feasibility

The effectiveness of projection methods for solving systems of linear inequalities is investigated. It is shown that they have a computational advantage over some alternatives and that this makes them successful in real-world applications. This is supported by experimental evidence provided in this paper on problems of various sizes (up to tens of thousands of … Read more

Binary positive semidefinite matrices and associated integer polytopes

We consider the positive semidefinite (psd) matrices with binary entries, along with the corresponding integer polytopes. We begin by establishing some basic properties of these matrices and polytopes. Then, we show that several families of integer polytopes in the literature — the cut, boolean quadric, multicut and clique partitioning polytopes — are faces of binary … Read more

Multidisciplinary Free Material Optimization

We present a mathematical framework for the so-called multidisciplinary free material optimization (MDFMO) problems, a branch of structural optimization in which the full material tensor is considered as a design variable. We extend the original problem statement by a class of generic constraints depending either on the design or on the state variables. Among the … Read more

Extension of the semidefinite characterization of sum of squares functional systems to algebraic structures

We extend Nesterov’s semidefinite programming (SDP) characterization of the cone of functions that can be expressed as sums of squares (SOS) of functions in finite dimensional linear functional spaces. Our extension is to algebraic systems that are endowed with a binary operation which map two elements of a finite dimensional vector space to another vector … Read more

Enclosing Ellipsoids and Elliptic Cylinders of Semialgebraic Sets and Their Application to Error Bounds in Polynomial Optimization

This paper is concerned with a class of ellipsoidal sets (ellipsoids and elliptic cylinders) in the m-dimensional Euclidean space which are determined by a freely chosen positive semidefinite matrix. All ellipsoidal sets in this class are similar to each other through a parallel transformation and a scaling around their centers by a constant factor. Based … Read more

A sufficiently exact inexact Newton step based on reusing matrix information

Newton’s method is a classical method for solving a nonlinear equation $F(z)=0$. We derive inexact Newton steps that lead to an inexact Newton method, applicable near a solution. The method is based on solving for a particular $F'(z_{k’})$ during $p$ consecutive iterations $k=k’,k’+1,\dots,k’+p-1$. One such $p$-cycle requires $2^p-1$ solves with the matrix $F'(z_{k’})$. If matrix … Read more

Copositive Programming – a Survey

Copositive programming is a relatively young field in mathematical optimization. It can be seen as a generalization of semidefinite programming, since it means optimizing over the cone of so called copositive matrices. Like semidefinite programming, it has proved particularly useful in combinatorial and quadratic optimization. The purpose of this survey is to introduce the field … Read more

On convex envelopes and underestimators for bivariate functions

In this paper we discuss convex underestimators for bivariate functions. We first present a method for deriving convex envelopes over the simplest two-dimensional polytopes, i.e., triangles. Next, we propose a technique to compute the value at some point of the convex envelope over a general two-dimensional polytope, together with a supporting hyperplane of the convex … Read more