A linear programming reformulation of the standard quadratic optimization problem

The problem of minimizing a quadratic form over the standard simplex is known as the standard quadratic optimization problem (SQO). It is NP-hard, and contains the maximum stable set problem in graphs as a special case. In this note we show that the SQO problem may be reformulated as an (exponentially sized) linear program. Citation … Read more

Reduction of symmetric semidefinite programs using the regular *-representation

We consider semidefinite programming problems on which a permutation group is acting. We describe a general technique to reduce the size of such problems, exploiting the symmetry. The technique is based on a low-order matrix *-representation of the commutant (centralizer ring) of the matrix algebra generated by the permutation matrices. We apply it to extending … Read more

On the solution of large-scale SDP problems by the modified barrier method using iterative solvers

When solving large-scale semidefinite programming problems by second-order methods, the storage and factorization of the Newton matrix are the limiting factors. For a particular algorithm based on the modified barrier method, we propose to use iterative solvers instead of the routinely used direct factorization techniques. The preconditioned conjugate gradient method proves to be a viable … Read more

Solving Maximum-Entropy Sampling Problems Using Factored Masks

We present a practical approach to Anstreicher and Lee’s masked spectral bound for maximum-entropy sampling, and we describe favorable results that we have obtained with a Branch-&-Bound algorithm based on our approach. By representing masks in factored form, we are able to easily satisfy a semidefiniteness constraint. Moreover, this representation allows us to restrict the … Read more

How Far Can We Go With Primal-Dual Interior Point Methods for SDP?

Primal–dual interior point methods and the HKM method in particular have been implemented in a number of software packages for semidefinite programming. These methods have performed well in practice on small to medium sized SDP’s. However, primal–dual codes have had some trouble in solving larger problems because of the method’s storage requirements. In this paper … Read more

Behavioral Measures and their Correlation with IPM Iteration Counts on Semi-Definite Programming Problems

We study four measures of problem instance behavior that might account for the observed differences in interior-point method (IPM) iterations when these methods are used to solve semidefinite programming (SDP) problem instances: (i) an aggregate geometry measure related to the primal and dual feasible regions (aspect ratios) and norms of the optimal solutions, (ii) the … Read more

Large-scale semidefinite programs in electronic structure calculation

Employing the variational approach having the two-body reduced density matrix (RDM) as variables to compute the ground state energies of atomic-molecular systems has been a long time dream in electronic structure theory in chemical physics/physical chemistry. Realization of the RDM approach has benefited greatly from recent developments in semidefinite programming (SDP). We present the actual … Read more

Sensitivity analysis in convex quadratic optimization: simultaneous perturbation of the objective and right-hand-side vectors

In this paper we study the behavior of Convex Quadratic Optimization problems when variation occurs simultaneously in the right-hand side vector of the constraints and in the coefficient vector of the linear term in the objective function. It is proven that the optimal value function is piecewise-quadratic. The concepts of transition point and invariancy interval … Read more

Towards a practical parallelisation of the simplex method

The simplex method is frequently the most efficient method of solving linear programming (LP) problems. This paper reviews previous attempts to parallelise the simplex method in relation to efficient serial simplex techniques and the nature of practical LP problems. For the major challenge of solving general large sparse LP problems, there has been no parallelisation … Read more

Some Disadvantages of a Mehrotra-Type Primal-Dual Corrector Interior Point Algorithm for Linear Programming

The Primal-Dual Corrector (PDC) algorithm that we propose computes on each iteration a corrector direction in addition to the direction of the standard primal-dual path-following interior point method (Kojima et al., 1989) for Linear Programming (LP), in an attempt to improve performance. The new iterate is chosen by moving along the sum of these directions, … Read more