Membership testing for Bernoulli and tail-dependence matrices

Testing a given matrix for membership in the family of Bernoulli matrices is a longstanding problem, the many applications of Bernoulli vectors in computer science, finance, medicine, and operations research emphasize its practical relevance. A novel approach towards this problem was taken by [Fiebig et al., 2017] for lowdimensional settings d

Equivalences and Differences in Conic Relaxations of Combinatorial Quadratic Optimization Problems

Various conic relaxations of quadratic optimization problems in nonnega- tive variables for combinatorial optimization problems, such as the binary integer quadratic problem, quadratic assignment problem (QAP), and maximum stable set problem have been proposed over the years. The binary and complementarity conditions of the combi- natorial optimization problems can be expressed in several ways, each … Read more

Self-concordant inclusions: A unified framework for path-following generalized Newton-type algorithms

We study a class of monotone inclusions called “self-concordant inclusion” which covers three fundamental convex optimization formulations as special cases. We develop a new generalized Newton-type framework to solve this inclusion. Our framework subsumes three schemes: full-step, damped-step and path-following methods as specific instances, while allows one to use inexact computation to form generalized Newton … Read more

Measuring axial symmetry in convex cones

The problem of measuring the degree of central symmetry of a convex body has been treated by various authors since the early twentieth century. This work addresses the issue of measuring the degree of axial symmetry of a convex cone. Passing from central symmetry in convex bodies to axial symmetry in convex cones is not … Read more

Permuting Spiked Matrices to Triangular Form and its Application to the Forrest-Tomlin Update

This paper is concerned with the problem of permuting a spiked matrix to triangular form. A spiked matrix results from changing one column or one row in a triangular matrix. In this paper we focus on changing one column in an upper triangular matrix. Spiked matrices arise in updating the LU factors of a matrix … Read more

A rounding procedure for semidefinite optimization

Recently, Mohammad-Nezhad and Terlaky studied the identification of the optimal partition for semidefinite optimization. An approximation of the optimal partition was obtained from a bounded sequence of solutions on, or in a neighborhood of the central path. Here, we use the approximation of the optimal partition in a rounding procedure to generate an approximate maximally … Read more

Simplex QP-based methods for minimizing a conic quadratic objective over polyhedra

We consider minimizing a conic quadratic objective over a polyhedron. Such problems arise in parametric value-at-risk minimization, portfolio optimization, and robust optimization with ellipsoidal objective uncertainty; and they can be solved by polynomial interior point algorithms for conic quadratic optimization. However, interior point algorithms are not well-suited for branch-and-bound algorithms for the discrete counterparts of … Read more

A Benders squared (B2) framework for infinite-horizon stochastic linear programs

We propose a nested decomposition scheme for infinite-horizon stochastic linear programs. Our approach can be seen as a provably convergent extension of stochastic dual dynamic programming to the infinite-horizon setting: we explore a sequence of finite-horizon problems of increasing length until we can prove convergence with a given confidence level. The methodology alternates between a … Read more

Semidefinite Programming and Nash Equilibria in Bimatrix Games

We explore the power of semidefinite programming (SDP) for finding additive epsilon-approximate Nash equilibria in bimatrix games. We introduce an SDP relaxation for a quadratic programming formulation of the Nash equilibrium (NE) problem and provide a number of valid inequalities to improve the quality of the relaxation. If a rank-1 solution to this SDP is … Read more

SDP-based Branch-and-Bound for Non-convex Quadratic Integer Optimization

Semidefinite programming (SDP) relaxations have been intensively used for solving discrete quadratic optimization problems, in particular in the binary case. For the general non-convex integer case with box constraints, the branch-and-bound algorithm Q-MIST has been proposed [11], which is based on an extension of the well-known SDP-relaxation for max-cut. For solving the resulting SDPs, Q-MIST … Read more