Facial Reduction and Partial Polyhedrality

We present FRA-Poly, a facial reduction algorithm (FRA) for conic linear programs that is sensitive to the presence of polyhedral faces in the cone. The main goals of FRA and FRA-Poly are the same, i.e., finding the minimal face containing the feasible region and detecting infeasibility, but FRA-Poly treats polyhedral constraints separately. This idea enables … Read more

Benders Decomposition and Column-and-Row Generation for Solving Large-Scale Linear Programs with Column-Dependent-Rows

In a recent work, Muter et al. (2013a) identified and characterized a general class of linear programming (LP) problems – known as problems with column-dependent-rows (CDR-problems). These LPs feature two sets of constraints with mutually exclusive groups of variables in addition to a set of structural linking constraints, in which variables from both groups appear … Read more

On the Lovasz Theta Function and Some Variants

The Lovasz theta function of a graph is a well-known upper bound on the stability number. It can be computed efficiently by solving a semidefinite program (SDP). Actually, one can solve either of two SDPs, one due to Lovasz and the other to Groetschel et al. The former SDP is often thought to be preferable … Read more

DC Decomposition of Nonconvex Polynomials with Algebraic Techniques

We consider the problem of decomposing a multivariate polynomial as the difference of two convex polynomials. We introduce algebraic techniques which reduce this task to linear, second order cone, and semidefinite programming. This allows us to optimize over subsets of valid difference of convex decompositions (dcds) and find ones that speed up the convex-concave procedure … Read more

Sum of Squares Basis Pursuit with Linear and Second Order Cone Programming

We devise a scheme for solving an iterative sequence of linear programs (LPs) or second order cone programs (SOCPs) to approximate the optimal value of any semidefinite program (SDP) or sum of squares (SOS) program. The first LP and SOCP-based bounds in the sequence come from the recent work of Ahmadi and Majumdar on diagonally … Read more

Polynomial SDP Cuts for Optimal Power Flow

The use of convex relaxations has lately gained considerable interest in Power Systems. These relaxations play a major role in providing quality guarantees for non-convex optimization problems. For the Optimal Power Flow (OPF) prob- lem, the semidefinite programming (SDP) relaxation is known to produce tight lower bounds. Unfortunately, SDP solvers still suffer from a lack … Read more

The Lyapunov rank of an improper cone

Let K be a closed convex cone with dual K^* in a finite-dimensional real inner-product space V. The complementarity set of K is C(K) = { (x, s) in K × K^* | = 0 }. We say that a linear transformation L : V -> V is Lyapunov-like on K if = 0 for all (x, … Read more

Degeneracy in Maximal Clique Decomposition for Semidefinite Programs

Exploiting sparsity in Semidefinite Programs (SDP) is critical to solving large-scale problems. The chordal completion based maximal clique decomposition is the preferred approach for exploiting sparsity in SDPs. In this paper, we show that the maximal clique-based SDP decomposition is primal degenerate when the SDP has a low rank solution. We also derive conditions under … Read more

Examples with Decreasing Largest Inscribed Ball for Deterministic Rescaling Algorithms

Recently, Pena and Soheili presented a deterministic rescaling perceptron algorithm and proved that it solves a feasible perceptron problem in $O(m^2n^2\log(\rho^{-1}))$ perceptron update steps, where $\rho$ is the radius of the largest inscribed ball. The original stochastic rescaling perceptron algorithm of Dunagan and Vempala is based on systematic increase of $\rho$, while the proof of … Read more

A polynomial primal-dual affine scaling algorithm for symmetric conic optimization

The primal-dual Dikin-type affine scaling method was originally proposed for linear optimization and then extended to semidefinite optimization. Here, the method is generalized to symmetric conic optimization using the notion of Euclidean Jordan algebras. The method starts with an interior feasible but not necessarily centered primal-dual solution, and it features both centering and reducing the … Read more