A semidefinite programming hierarchy for packing problems in discrete geometry

Packing problems in discrete geometry can be modeled as finding independent sets in infinite graphs where one is interested in independent sets which are as large as possible. For finite graphs one popular way to compute upper bounds for the maximal size of an independent set is to use Lasserre’s semidefinite programming hierarchy. We generalize … Read more

A Two-Variable Approach to the Two-Trust-Region Subproblem

The trust-region subproblem minimizes a general quadratic function over an ellipsoid and can be solved in polynomial time using a semidefinite-programming (SDP) relaxation. Intersecting the feasible set with a second ellipsoid results in the two-trust-region subproblem (TTRS). Even though TTRS can also be solved in polynomial-time, existing algorithms do not use SDP. In this paper, … Read more

An inexact proximal path-following algorithm for constrained convex minimization

Many scientific and engineering applications feature large-scale non-smooth convex minimization problems over convex sets. In this paper, we address an important instance of this broad class where we assume that the non-smooth objective is equipped with a tractable proximity operator and that the convex constraints afford a self-concordant barrier. We provide a new joint treatment … Read more

A First-Order Algorithm for the A-Optimal Experimental Design Problem: A Mathematical Programming Approach

We develop and analyse a first-order algorithm for the A-optimal experimental design problem. The problem is first presented as a special case of a parametric family of optimal design problems for which duality results and optimality conditions are given. Then, two first-order (Frank-Wolfe type) algorithms are presented, accompanied by a detailed time-complexity analysis of the … Read more

Fast implementation for semidefinite programs with positive matrix completion

Solving semidefinite programs (SDP) in a short time is the key to managing various mathematical optimization problems in practical time. The matrix-completion primal-dual interior-point method (MC-PDIPM) extracts a structural sparsity of input SDP by factorizing the variable matrices, and it shrinks the computation time. In this paper, we propose a new factorization based on the … Read more

On the irreducibility, Lyapunov rank, and automorphisms of speical Bishop-Phelps cones

Motivated by optimization considerations, we consider special Bishop-Phelps cones in R^n which are of the form {(t,x): t \geq ||x||} for some norm on R^(n-1). We show that for n bigger than 2, such cones are always irreducible. De fining the Lyapunov rank of a proper cone K as the dimension of the Lie algebra of … Read more

Semidefinite Programming Based Preconditioning for More Robust Near-Separable Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) under the separability assumption can provably be solved efficiently, even in the presence of noise, and has been shown to be a powerful technique in document classification and hyperspectral unmixing. This problem is referred to as near-separable NMF and requires that there exists a cone spanned by a small subset of … Read more

A Lagrangian-DNN Relaxation: a Fast Method for Computing Tight Lower Bounds for a Class of Quadratic Optimization Problems

We propose an efficient computational method for linearly constrained quadratic optimization problems (QOPs) with complementarity constraints based on their Lagrangian and doubly nonnegative (DNN) relaxation and first-order algorithms. The simplified Lagrangian-CPP relaxation of such QOPs proposed by Arima, Kim, and Kojima in 2012 takes one of the simplest forms, an unconstrained conic linear optimization problem … Read more

Conic Geometric Programming

We introduce and study conic geometric programs (CGPs), which are convex optimization problems that unify geometric programs (GPs) and conic optimization problems such as linear programs (LPs) and semidefinite programs (SDPs). A CGP consists of a linear objective function that is to be minimized subject to affine constraints, convex conic constraints, and upper bound constraints … Read more

Strengthened Bounds for the Probability of k-Out-Of-n Events

Abstract: Given a set of n random events in a probability space, represented by n Bernoulli variables (not necessarily independent,) we consider the probability that at least k out of n events occur. When partial distribution information, i.e., individual probabilities and all joint probabilities of up to m (m< n) events, are provided, only an ... Read more