Quantum and classical coin-flipping protocols based on bit-commitment and their point games

We focus on a family of quantum coin-flipping protocols based on quantum bit-commitment. We discuss how the semidefinite programming formulations of cheating strategies can be reduced to optimizing a linear combination of fidelity functions over a polytope. These turn out to be much simpler semidefinite programs which can be modelled using second-order cone programming problems. … Read more

Quadratic Cone Cutting Surfaces for Quadratic Programs with On-Off Constraints

We study the convex hull of a set arising as a relaxation of difficult convex mixed integer quadratic programs (MIQP). We characterize the extreme points of our set and the extreme points of its continuous relaxation. We derive four quadratic cutting surfaces that improve the strength of the continuous relaxation. Each of the cutting surfaces … Read more

Solution Analysis for the Pseudomonotone Second-order Cone Linear Complementarity Problem

In this paper, we study properties of the solution of the pseudomonotone second-order cone linear complementarity problems (SOCLCP). Based upon Tao’s recent work [Tao, J. Optim. Theory Appl., 159(2013), pp. 41–56] on pseudomonotone LCP on Euclidean Jordan algebras, we made two noticeable contributions on the solutions of the pseudomonotone SOCLCP: First, we introduce the concept … Read more

Convex hull of two quadratic or a conic quadratic and a quadratic inequality

In this paper we consider an aggregation technique introduced by Yildiran, 2009 to study the convex hull of regions defined by two quadratic or by a conic quadratic and a quadratic inequality. Yildiran shows how to characterize the convex hull of open sets defined by two strict quadratic inequalities using Linear Matrix Inequalities (LMI). We … Read more

Constraint Qualification Failure in Action

This note presents a theoretical analysis of disjunctive constraints featuring unbounded variables. In this framework, classical modeling techniques, including big-M approaches, are not applicable. We introduce a lifted second-order cone formulation of such on/off constraints and discuss related constraint qualification issues. A solution is proposed to avoid solvers’ failure. CitationH. L. Hijazi and L.Liberti “Constraint … Read more

Disjunctive Cuts for Cross-Sections of the Second-Order Cone

In this paper we provide a unified treatment of general two-term disjunctions on cross-sections of the second-order cone. We derive a closed-form expression for a convex inequality that is valid for such a disjunctive set and show that this inequality is sufficient to characterize the closed convex hull of all two-term disjunctions on ellipsoids and … Read more

How to Convexify the Intersection of a Second Order Cone and a Nonconvex Quadratic

A recent series of papers has examined the extension of disjunctive-programming techniques to mixed-integer second-order-cone programming. For example, it has been shown—by several authors using different techniques—that the convex hull of the intersection of an ellipsoid, $\E$, and a split disjunction, $(l – x_j)(x_j – u) \le 0$ with $l < u$, equals the intersection ... Read more

Two-Term Disjunctions on the Second-Order Cone

Balas introduced disjunctive cuts in the 1970s for mixed-integer linear programs. Several recent papers have attempted to extend this work to mixed-integer conic programs. In this paper we study the structure of the convex hull of a two-term disjunction applied to the second-order cone, and develop a methodology to derive closed-form expressions for convex inequalities … Read more

A Branch-and-Bound Algorithm for the Close-Enough Traveling Salesman Problem

This paper deals with the Close-Enough Traveling Salesman Problem (CETSP). In the CETSP, rather than visiting the vertex (customer) itself, the salesman must visit a specific region containing such vertex. To solve this problem, we propose a simple yet effective exact algorithm, based on Branch-and-Bound and Second Order Cone Programming (SOCP). The proposed algorithm was … Read more