Positive semidefinite matrix approximation with a trace constraint

We propose an efficient algorithm to solve positive a semidefinite matrix approximation problem with a trace constraint. Without constraints, it is well known that positive semidefinite matrix approximation problem can be easily solved by one-time eigendecomposition of a symmetric matrix. In this paper, we confirmed that one-time eigendecomposition is also sufficient even if a trace … Read more

Convex computation of extremal invariant measures of nonlinear dynamical systems and Markov processes

We propose a convex-optimization-based framework for computation of invariant measures of polynomial dynamical systems and Markov processes, in discrete and con- tinuous time. The set of all invariant measures is characterized as the feasible set of an infinite-dimensional linear program (LP). The objective functional of this LP is then used to single-out a specific measure … Read more

Semidenite Approximations of Invariant Measures for Polynomial Systems

We consider the problem of approximating numerically the moments and the supports of measures which are invariant with respect to the dynamics of continuousand discrete-time polynomial systems, under semialgebraic set constraints. First, we address the problem of approximating the density and hence the support of an invariant measure which is absolutely continuous with respect to … Read more

A multilevel analysis of the Lasserre hierarchy

This paper analyzes the relation between different orders of the Lasserre hierarchy for polynomial optimization (POP). Although for some cases solving the semidefinite programming relaxation corresponding to the first order of the hierarchy is enough to solve the underlying POP, other problems require sequentially solving the second or higher orders until a solution is found. … Read more

On positive duality gaps in semidefinite programming

We study semidefinite programs (SDPs) with positive duality gaps, i.e., different optimal values in the primal and dual problems. the primal and dual problems differ. These SDPs are considered extremely pathological, they are often unsolvable, and they also serve as models of more general pathological convex programs. We first fully characterize two variable SDPs with … Read more

Distributionally robust optimization with polynomial densities: theory, models and algorithms

In distributionally robust optimization the probability distribution of the uncertain problem parameters is itself uncertain, and a fictitious adversary, e.g., nature, chooses the worst distribution from within a known ambiguity set. A common shortcoming of most existing distributionally robust optimization models is that their ambiguity sets contain pathological discrete distribution that give nature too much … Read more

A new approximation algorithm for unrelated parallel machine scheduling problem with release dates

In this research, we consider the unrelated parallel machine scheduling problem with release dates. The goal of this scheduling problem is to find an optimal job assignment with minimal sum of weighted completion times. As it is demonstrated in the present paper, this problem is NP-hard in the strong sense. Albeit the computational complexity, which … Read more

Representation of distributionally robust chance-constraints

Given $X\subset R^n$, $\varepsilon \in (0,1)$, a parametrized family of probability distributions $(\mu_{a})_{a\in A}$ on $\Omega\subset R^p$, we consider the feasible set $X^*_\varepsilon\subset X$ associated with the {\em distributionally robust} chance-constraint \[X^*_\varepsilon\,=\,\{x\in X:\:{\rm Prob}_\mu[f(x,\omega)\,>\,0]> 1-\varepsilon,\,\forall\mu\in\mathscr{M}_a\},\] where $\mathscr{M}_a$ is the set of all possibles mixtures of distributions $\mu_a$, $a\in A$. For instance and typically, the family … Read more

Moments and convex optimization for analysis and control of nonlinear partial differential equations

This work presents a convex-optimization-based framework for analysis and control of nonlinear partial differential equations. The approach uses a particular weak embedding of the nonlinear PDE, resulting in a \emph{linear} equation in the space of Borel measures. This equation is then used as a constraint of an infinite-dimensional linear programming problem (LP). This LP is … Read more

On the Complexity of Testing Attainment of the Optimal Value in Nonlinear Optimization

We prove that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time) algorithm that can test whether the optimal value of a nonlinear optimization problem where the objective and constraints are given by low-degree polynomials is attained. If the degrees of these polynomials are fixed, our results along with previously-known “Frank-Wolfe type” theorems … Read more