A PARALLEL interior point decomposition algorithm for block-angular semidefinite programs

We present a two phase interior point decomposition framework for solving semidefinite (SDP) relaxations of sparse maxcut, stable set, and box constrained quadratic programs. In phase 1, we suitably modify the {\em matrix completion} scheme of Fukuda et al. \cite{fukuda_et_al} to preprocess an existing SDP into an equivalent SDP in the block-angular form. In phase … Read more

A Unified Theorem on SDP Rank Reduction

We consider the problem of finding a low-rank approximate solution to a system of linear equations in symmetric, positive semidefinite matrices. Specifically, let $A_1,\ldots,A_m \in \R^{n\times n}$ be symmetric, positive semidefinite matrices, and let $b_1,\ldots,b_m \ge 0$. We show that if there exists a symmetric, positive semidefinite matrix $X$ to the system $A_i \bullet X … Read more

A Filter Algorithm for Nonlinear Semidefinite Programming

This paper proposes a filter method for solving nonlinear semidefinite programming problems. Our method extends to this setting the filter SQP (sequential quadratic programming) algorithm, recently introduced for solving nonlinear programming problems, obtaining their respective global convergence results. CitationCMM-B-06/10 – 171 Centre for Mathematical Modelling, UMR 2071, Universidad de Chile-CNRS. Casilla 170-3 Santiago 3, Chile … Read more

A Matrix-lifting Semidefinite Relaxation for the Quadratic Assignment Problem

The quadratic assignment problem (\QAP) is arguably one of the hardest of the NP-hard discrete optimization problems. Problems of dimension greater than 20 are considered to be large scale. Current successful solution techniques depend on branch and bound methods. However, it is difficult to get \emph{strong and inexpensive} bounds. In this paper we introduce a … Read more

Copositive and Semidefinite Relaxations of the Quadratic Assignment Problem

Semidefinite relaxations of the quadratic assignment problem (QAP) have recently turned out to provide good approximations to the optimal value of QAP. We take a systematic look at various conic relaxations of QAP. We first show that QAP can equivalently be formulated as a linear program over the cone of completely positive matrices. Since it … Read more

On the Lovász theta-number of almost regular graphs with application to Erdös–Rényi graphs

We consider k-regular graphs with loops, and study the Lovász theta-numbers and Schrijver theta’-numbers of the graphs that result when the loop edges are removed. We show that the theta-number dominates a recent eigenvalue upper bound on the stability number due to Godsil and Newman [C.D. Godsil and M.W. Newman. Eigenvalue bounds for independent sets. … Read more

Exploiting symmetries in SDP-relaxations for polynomial optimization

In this paper we study various approaches for exploiting symmetries in polynomial optimization problems within the framework of semi definite programming relaxations. Our special focus is on constrained problems especially when the symmetric group is acting on the variables. In particular, we investigate the concept of block decomposition within the framework of constrained polynomial optimization … Read more

Copositivity cuts for improving SDP bounds on the clique number

Adding cuts based on copositive matrices, we propose to improve Lovász’ bound on the clique number and its tightening introduced by McEliece, Rodemich, Rumsey, and Schrijver. Candidates for cheap and efficient copositivity cuts of this type are obtained from graphs with known clique number. The cost of previously established semidefinite programming bound hierarchies rapidly increases … Read more

Theory of Semidefinite Programming for Sensor Network Localization

We analyze the semidefinite programming (SDP) based model and method for the position estimation problem in sensor network localization and other Euclidean distance geometry applications. We use SDP duality and interior–point algorithm theories to prove that the SDP localizes any network or graph that has unique sensor positions to fit given distance measures. Therefore, we … Read more

Approximating the Radii of Point Sets

We consider the problem of computing the outer-radii of point sets. In this problem, we are given integers $n, d, k$ where $k \le d$, and a set $P$ of $n$ points in $R^d$. The goal is to compute the {\em outer $k$-radius} of $P$, denoted by $\kflatr(P)$, which is the minimum, over all $(d-k)$-dimensional … Read more