Network Models with Unsplittable Node Flows with Application to Unit Train Scheduling

We study network models where flows cannot be split or merged when passing through certain nodes, i.e., for such nodes, each incoming arc flow must be matched to an outgoing arc flow of identical value. This requirement, which we call “no-split no-merge” (NSNM), appears in railroad applications where train compositions can only be modified at … Read more

Model and Discretization Error Adaptivity within Stationary Gas Transport Optimization

The minimization of operation costs for natural gas transport networks is studied. Based on a recently developed model hierarchy ranging from detailed models of instationary partial differential equations with temperature dependence to highly simplified algebraic equations, modeling and discretization error estimates are presented to control the overall error in an optimization method for stationary and … Read more

Uniqueness of Market Equilibria on Networks with Transport Costs

We study the existence and uniqueness of equilibria for perfectly competitive markets in capacitated transport networks. The model under consideration is rather general so that it captures basic aspects of related models in, e.g., gas or electricity networks. We formulate the market equilibrium model as a mixed complementarity problem and show the equivalence to a … Read more

Uniqueness and Multiplicity of Market Equilibria on DC Power Flow Networks

We consider uniqueness and multiplicity of market equilibria in a short-run setup where traded quantities of electricity are transported through a capacitated network in which power flows have to satisfy the classical lossless DC approximation. The firms face fluctuating demand and decide on their production, which is constrained by given capacities. Today, uniqueness of such … Read more

Balancing Communication and Computation in Distributed Optimization

Methods for distributed optimization have received significant attention in recent years owing to their wide applicability in various domains including machine learning, robotics and sensor networks. A distributed optimization method typically consists of two key components: communication and computation. More specifically, at every iteration (or every several iterations) of a distributed algorithm, each node in … Read more

Constraint Generation for Two-Stage Robust Network Flow Problem

In this paper, we propose new constraint generation algorithms for solving the two-stage robust minimum cost flow problem, a problem that arises from various applications such as transportation and logistics. In order to develop efficient algorithms under general polyhedral uncertainty set, we repeatedly exploit the network-flow structure to reformulate the two-stage robust minimum cost flow … Read more

Parsimonious formulations for low-diameter clusters

In the analysis of networks, one often searches for tightly knit clusters. One property of a “good” cluster is a small diameter (say, bounded by $k$), which leads to the concept of a $k$-club. In this paper, we propose new path-like and cut-like integer programming formulations for detecting these low-diameter subgraphs. They simplify, generalize, and/or … Read more

A General Regularized Continuous Formulation for the Maximum Clique Problem

In this paper, we develop a general regularization-based continuous optimization framework for the maximum clique problem. In particular, we consider a broad class of regularization terms that can be included in the classic Motzkin-Strauss formulation and we develop conditions that guarantee the equivalence between the continuous regularized problem and the original one in both a … Read more

Algorithmic Results for Potential-Based Flows: Easy and Hard Cases

Potential-based flows are an extension of classical network flows in which the flow on an arc is determined by the difference of the potentials of its incident nodes. Such flows are unique and arise, for example, in energy networks. Two important algorithmic problems are to determine whether there exists a feasible flow and to maximize … Read more

Substation Location and Transmission Network Expansion Problem in Power System

In this paper, we propose a model for the generation and transmission network expansion planning problem that includes decisions related to substations’ locations and sizes. In power system expansion planning problems, locations of generation units and/or transmission lines are determined. However, substation location decisions are not explicitly studied. Nevertheless, including the decisions of substations’ locations … Read more