A new mixed integer linear programming formulation for one problem of exploration of online social networks

Enormous global popularity of online social network sites has initiated numerous studies and methods investigating different aspects of their use, so some concepts from network-based studies in optimization theory can be used for research into online networks. In Gaji\’c (2014) are given a several new mixed integer linear programming formulations for first and second problem … Read more

Chance-Constrained Multi-Terminal Network Design Problems

We consider a reliable network design problem under uncertain edge failures. Our goal is to select a minimum-cost subset of edges in the network to connect multiple terminals together with high probability. This problem can be seen as a stochastic variant of the Steiner tree problem. We propose a scenario-based Steiner cut formulation, and a … Read more

A Characterization of Irreducible Infeasible Subsystems in Flow Networks

Infeasible network flow problems with supplies and demands can be characterized via violated cut-inequalities of the classical Gale-Hoffman theorem. Written as a linear program, irreducible infeasible subsystems (IISs) provide a different means of infeasibility characterization. In this article, we answer a question left open in the literature, by showing a one-to-one correspondence between IISs and … Read more

Minimum Cost Path Problem for Plug-in Hybrid Electric Vehicles

We introduce a practically important and theoretically challenging problem: finding the minimum cost path for PHEVs in a road network with refueling and charging stations. We show that this problem is NP-complete and present a mixed integer quadratically constrained formulation, a discrete approximation dynamic programming heuristic, and a shortest path heuristic as solution methodologies. Practical … Read more

Incremental Network Design with Maximum Flows

We study an incremental network design problem, where in each time period of the planning horizon an arc can be added to the network and a maximum flow problem is solved, and where the objective is to maximize the cumulative flow over the entire planning horizon. After presenting two mixed integer programming (MIP) formulations for … Read more

Finding the Most Likely Infection Path in Networks with Limited Information

In this paper we address the problem of identifying the most likely infection pattern responsible for the spread of a disease in a network. In particular, we focus on the scenario where limited information (i.e. infection reports) is available during an ongoing outbreak. For this problem we propose a maximum likelihood model and present an … Read more

Performance Analysis of Content-Centric and Content-Delivery Networks with Evolving Object Popularity

The Internet is currently mostly exploited as a means to perform massive digital content distribution. Such a usage profile was not specifically taken into account while initially designing the architecture of the network: as a matter of fact, the Internet was instead conceived around the concept of host-to-host communications between two remote machines. To solve … Read more

Survivable Network Coding

Given a telecommunication network, modeled by a graph with capacities, we are interested in comparing the behavior and usefulness of two information propagation schemes, namely multicast and network coding, when the aforementioned network is subject to single arc failure. We consider the case with a single source node and a set of terminal nodes. The … Read more

Application of the Moment-SOS Approach to Global Optimization of the OPF Problem

Finding a global solution to the optimal power flow (OPF) problem is difficult due to its nonconvexity. A convex relaxation in the form of semidefinite programming (SDP) has attracted much attention lately as it yields a global solution in several practical cases. However, it does not in all cases, and such cases have been documented … Read more

Minimum concave cost flows in capacitated grid networks

We study the minimum concave cost flow problem over a two-dimensional grid network (CFG), where one dimension represents time ($1\le t\le T$) and the other dimension represents echelons ($1\le l\le L$). The concave function over each arc is given by a value oracle. We give a polynomial-time algorithm for finding the optimal solution when the … Read more