Core Routing on Dynamic Time-Dependent Road Networks

Route planning in large scale time-dependent road networks is an important practical application of the shortest paths problem that greatly benefits from speedup techniques. In this paper we extend a two-levels hierarchical approach for point-to-point shortest paths computations to the time-dependent case. This method, also known as core routing in the literature for static graphs, … Read more

Bidirectional A* Search on Time-Dependent Road Networks

The computation of point-to-point shortest paths on time-dependent road networks has a large practical interest, but very few works propose efficient algorithms for this problem. We propose a novel approach which tackles one of the main complications of route planning in time-dependent graphs, which is the difficulty of using bidirectional search: since the exact arrival … Read more

Modeling and Solving Location Routing and Scheduling Problems

This paper studies location routing and scheduling problems, a class of problems in which the decisions of facility location, vehicle routing, and route assignment are optimized simultaneously. For a version with capacity and time restrictions, two formulations are presented, one graph-based and one set-partitioning-based. For the set-partitioning-based formulation, valid inequalities are identified and their effectiveness … Read more

Modelling Hop-Constrained and Diameter-Constrained Minimum Spanning Tree Problems as Steiner Tree Problems over Layered Graphs

The Hop-Constrained Minimum Spanning Tree Problem (HMSTP) is a NP-hard problem arising in the design of centralized telecommunication networks with quality of service constraints. We show that the HMSTP is equivalent to a Steiner Tree Problem (STP) in an adequate layered graph. We prove that the directed cut formulation for the STP defined in the … Read more

The Price of Atomic Selfish Ring Routing

We study selfish routing in ring networks with respect to minimizing the maximum latency. Our main result is an establishement of constant bounds on the price of stability (PoS) for routing unsplittable flows with linear latency. We show that the PoS is at most 6.83, which reduces to 4:57 when the linear latency functions are … Read more

A Dynamic Programming Framework for Combinatorial Optimization Problems on Graphs with Bounded Pathwidth

In this paper we present an algorithmic framework for solving a class of combinatorial optimization problems on graphs with bounded pathwidth. The problems are NP-hard in general, but solvable in linear time on this type of graphs. The problems are relevant for assessing network reliability and improving the network’s performance and fault tolerance. The main … Read more

An exact algorithm for solving the ring star problem

This paper deals with the ring star problem that consists in designing a ring that pass through a central depot, and then assigning each non visited customer to a node of the ring. The objective is to minimize the total routing and assignment costs. A new chain based formulation is proposed. Valid inequalities are proposed … Read more

An Efficient Algorithm for Computing Robust Minimum Capacity s-t Cuts

The Minimum Capacity s-t Cut Problem (Min Cut) is an intensively studied problem in combinatorial optimization. In this paper, we study Min Cut when arc capacities are uncertain but known to exist in pre-specified intervals. This framework can be used to model many real-world applications of Min Cut under data uncertainty such as in open-pit … Read more

Simultaneous Solution of Lagrangean Dual Problems Interleaved with Preprocessing for the Weight Constrained Shortest Path Problem

Conventional Lagrangean preprocessing for the network Weight Constrained Shortest Path Problem (WCSPP calculates lower bounds on the cost of using each node and edge in a feasible path using a single optimal Lagrange multiplier for the relaxation of the WCSPP. These lower bounds are used in conjunction with an upper bound to eliminate nodes and … Read more

Convergent Network Approximation for the Continuous Euclidean Length Constrained Minimum Cost Path Problem

In many path planning situations we would like to find a path of constrained Euclidean length in 2D that minimises a line integral. We call this the Continuous Length-Constrained Minimum Cost Path Problem (C-LCMCPP). Generally, this will be a non-convex optimization problem, for which continuous approaches only ensure locally optimal solutions. However, network discretisations yield … Read more