The Star Degree Centrality Problem: A Decomposition Approach

We consider the problem of identifying the induced star with the largest cardinality open neighborhood in a graph. This problem, also known as the star degree centrality (SDC) problem, has been shown to be š¯’©š¯’«-complete. In this work, we first propose a new integer programming (IP) formulation, which has a fewer number of constraints and … Read more

Optimizing the Response for Arctic Mass Rescue Events

We study a model that optimizes the response to a mass rescue event in Arctic Alaska. The model contains dynamic logistics decisions for a large-scale maritime evacuation with the objectives of minimizing the impact of the event on the evacuees and the average evacuation time. Our proposed optimization model considers two interacting networks – the … Read more

A Robust Rolling Horizon Framework for Empty Repositioning

Naturally imbalanced freight flows force consolidation carriers to reposition resources empty. When constructing empty repositioning plans, the cost of repositioning resources empty needs to be weighed against the cost of corrective actions in case of unavailable resources. This is especially challenging given the uncertainty of future demand. We design and implement a robust rolling horizon … Read more

Solving Mixed-Integer Nonlinear Optimization Problems using Simultaneous Convexification – a Case Study for Gas Networks

Solving mixed-integer nonlinear optimization problems (MINLPs) to global optimality is extremely challenging. An important step for enabling their solution consists in the design of convex relaxations of the feasible set. Known solution approaches based on spatial branch-and-bound become more effective the tighter the used relaxations are. Relaxations are commonly established by convex underestimators, where each … Read more

Quantum Bridge Analytics II: Network Optimization and Combinatorial Chaining for Asset Exchange

Quantum Bridge Analytics relates to methods and systems for hybrid classical-quantum computing, and is devoted to developing tools for bridging classical and quantum computing to gain the benefits of their alliance in the present and enable enhanced practical application of quantum computing in the future. This is the second of a two-part tutorial that surveys … Read more

A Simulated Annealing Algorithm for the Directed Steiner Tree Problem

In \cite{siebert2019linear} the authors present a set of integer programs (IPs) for the Steiner tree problem, which can be used for both, the directed and the undirected setting of the problem. Each IP finds an optimal Steiner tree with a specific structure. A solution with the lowest cost, corresponds to an optimal solution to the … Read more

Autonomous traffic at intersections: an optimization-based analysis of possible time, energy, and CO2 savings

In the growing field of autonomous driving, traffic-light controlled intersections as the nodes of large traffic networks are of special interest. We want to analyze how much an optimized coordination of vehicles and infrastructure can contribute to a more efficient transit through these bottlenecks. In addition, we are interested in sensitivity of the results with … Read more

Computing Technical Capacities in the European Entry-Exit Gas Market is NP-Hard

As a result of its liberalization, the European gas market is organized as an entry-exit system in order to decouple the trading and transport of natural gas. Roughly summarized, the gas market organization consists of four subsequent stages. First, the transmission system operator (TSO) is obliged to allocate so-called maximal technical capacities for the nodes … Read more

Robust location-transportation problems with integer-valued demand

A Location-Transportation (LT) problem concerns designing a company’s distribution network consisting of one central warehouse with ample stock and multiple local warehouses for a long but finite time horizon. The network is designed to satisfy the demands of geographically dispersed customers for multiple items within given delivery time targets. The company needs to decide on … Read more

An integrated planning model in centralized power systems

In the context of centralized electricity markets, we propose an integrated planning model for power pricing and network expansion, which endogenizes the scaling costs from power losses. While the substitutability pattern between pricing and expansion has been overlooked in the power flow optimization literature, this becomes particularly relevant in centralized electricity markets (where the headquarters … Read more