Towards an efficient Augmented Lagrangian method for convex quadratic programming

Interior point methods have attracted most of the attention in the recent decades for solving large scale convex quadratic programming problems. In this paper we take a different route as we present an augmented Lagrangian method for convex quadratic programming based on recent developments for nonlinear programming. In our approach, box constraints are penalized while … Read more

Forecasting conceivable interest rate market scenarios and significant losses on interest rate portfolios using mathematical optimization

This study proposes a mathematical optimization programming model that simultaneously forecasts interest rate market scenarios and significant losses on interest rate market portfolios. The model includes three main components. A constraint condition is set using the Mahalanobis distance, which consists of innovation terms in a dynamic conditional correlation-generalized autoregressive conditional heteroscedasticity (DCC-GARCH) model that represent … Read more

Intersection disjunctions for reverse convex sets

We present a framework to obtain valid inequalities for optimization problems constrained by a reverse convex set, which is defined as the set of points in a polyhedron that lie outside a given open convex set. We are particularly interested in cases where the closure of the convex set is either non-polyhedral, or is defined … Read more

On High-order Model Regularization for Multiobjective Optimization

A p-order regularization method for finding weak stationary points of multiobjective optimization problems with constraints is introduced. Under Holder conditions on the derivatives of the objective functions, complexity results are obtained that generalize properties recently proved for scalar optimization. Article Download View On High-order Model Regularization for Multiobjective Optimization

Basis Pursuit Denoise with Nonsmooth Constraints

Level-set optimization formulations with data-driven constraints minimize a regularization functional subject to matching observations to a given error level. These formulations are widely used, particularly for matrix completion and sparsity promotion in data interpolation and denoising. The misfit level is typically measured in the l2 norm, or other smooth metrics. In this paper, we present … Read more

A New Sequential Optimality Condition for Constrained Nonsmooth Optimization

We introduce a sequential optimality condition for locally Lipschitz constrained nonsmooth optimization, verifiable just using derivative information, and which holds even in the absence of any constraint qualification. The proposed sequential optimality condition is not only novel for nonsmooth problems, but brings new insights for the smooth case as well. We present a practical algorithm … Read more

A survey of semidefinite programming approaches to the generalized problem of moments and their error analysis

The generalized problem of moments is a conic linear optimization problem over the convex cone of positive Borel measures with given support. It has a large variety of applications, including global optimization of polynomials and rational functions, options pricing in finance, constructing quadrature schemes for numerical integration, and distributionally robust optimization. A usual solution approach, … Read more

Adaptive regularization algorithms with inexact evaluations for nonconvex optimization

A regularization algorithm using inexact function values and inexact derivatives is proposed and its evaluation complexity analyzed. This algorithm is applicable to unconstrained problems and to problems with inexpensive constraints (that is constraints whose evaluation and enforcement has negligible cost) under the assumption that the derivative of highest degree is beta-H\”{o}lder continuous. It features a … Read more

Deterministic upper bounds in global minimization with nonlinear equality constraints

We address the problem of deterministically determining upper bounds in continuous non-convex global minimization of box-constrained problems with equality constraints. These upper bounds are important for the termination of spatial branch-and-bound algorithms. Our method is based on the theorem of Miranda which helps to ensure the existence of feasible points in certain boxes. Then, the … Read more

Sharp worst-case evaluation complexity bounds for arbitrary-order nonconvex optimization with inexpensive constraints

We provide sharp worst-case evaluation complexity bounds for nonconvex minimization problems with general inexpensive constraints, i.e.\ problems where the cost of evaluating/enforcing of the (possibly nonconvex or even disconnected) constraints, if any, is negligible compared to that of evaluating the objective function. These bounds unify, extend or improve all known upper and lower complexity bounds … Read more