How much patience do you have? A worst-case perspective on smooth nonconvex optimization

The paper presents a survey of recent results in the field of worst-case complexity of algorithms for nonlinear (and possibly nonconvex) smooth optimization. Both constrained and unconstrained case are considered. ArticleDownload View PDF

Approximation of Matrix Rank Function and Its Application to Matrix Rank Minimization

Matrix rank minimization problem is widely applicable in many fields such as control, signal processing and system identification. However, the problem is in general NP-hard, and it is computationally hard to solve directly in practice. In this paper, we provide a new kind of approximation functions for the rank of matrix, and the corresponding approximation … Read more

A Block Coordinate Descent Method for Regularized Multi-Convex Optimization with Applications to Nonnegative Tensor Factorization and Completion

This paper considers regularized block multi-convex optimization, where the feasible set and objective function are generally non-convex but convex in each block of variables. We review some of its interesting examples and propose a generalized block coordinate descent method. (Using proximal updates, we further allow non-convexity over some blocks.) Under certain conditions, we show that … Read more

Complexity Analysis of Interior Point Algorithms for Non-Lipschitz and Nonconvex Minimization

We propose a first order interior point algorithm for a class of non-Lipschitz and nonconvex minimization problems with box constraints, which arise from applications in variable selection and regularized optimization. The objective functions of these problems are continuously differentiable typically at interior points of the feasible set. Our algorithm is easy to implement and the … Read more

Superiorization: An optimization heuristic for medical physics

Purpose: To describe and mathematically validate the superiorization methodology, which is a recently-developed heuristic approach to optimization, and to discuss its applicability to medical physics problem formulations that specify the desired solution (of physically given or otherwise obtained constraints) by an optimization criterion. Methods: The superiorization methodology is presented as a heuristic solver for a … Read more

Optimality conditions for the nonlinear programming problems on Riemannian manifolds

In recent years, many traditional optimization methods have been successfully generalized to minimize objective functions on manifolds. In this paper, we first extend the general traditional constrained optimization problem to a nonlinear programming problem built upon a general Riemannian manifold $\mathcal{M}$, and discuss the first-order and the second-order optimality conditions. By exploiting the differential geometry … Read more

Deriving robust counterparts of nonlinear uncertain inequalities

In this paper we provide a systematic way to construct the robust counterpart of a nonlinear uncertain inequality that is concave in the uncertain parameters. We use convex analysis (support functions, conjugate functions, Fenchel duality) and conic duality in order to convert the robust counterpart into an explicit and computationally tractable set of constraints. It … Read more

A GLOBALLY CONVERGENT STABILIZED SQP METHOD

Sequential quadratic programming (SQP) methods are a popular class of methods for nonlinearly constrained optimization. They are particularly effective for solving a sequence of related problems, such as those arising in mixed-integer nonlinear programming and the optimization of functions subject to differential equation constraints. Recently, there has been considerable interest in the formulation of \emph{stabilized} … Read more

A quasi-Newton proximal splitting method

A new result in convex analysis on the calculation of proximity operators in certain scaled norms is derived. We describe efficient implementations of the proximity calculation for a useful class of functions; the implementations exploit the piece-wise linear nature of the dual problem. The second part of the paper applies the previous result to acceleration … Read more

A discrete L-curve for the regularization of ill-posed inverse problems

In many applications, the discretization of continuous ill-posed inverse problems results in discrete ill-posed problems whose solution requires the use of regularization strategies. The L-curve criterium is a popular tool for choosing good regularized solutions, when the data noise norm is not a priori known. In this work, we propose replacing the original ill-posed inverse … Read more