CONVEX HULL RELAXATION (CHR) FOR CONVEX AND NONCONVEX MINLP PROBLEMS WITH LINEAR CONSTRAINTS

The behavior of enumeration-based programs for solving MINLPs depends at least in part on the quality of the bounds on the optimal value and of the feasible solutions found. We consider MINLP problems with linear constraints. The convex hull relaxation (CHR) is a special case of the primal relaxation (Guignard 1994, 2007) that is very … Read more

Solving structured nonlinear least-squares and nonlinear feasibility problems with expensive functions

We present an algorithm for nonlinear least-squares and nonlinear feasibility problems, i.e. for systems of nonlinear equations and nonlinear inequalities, which depend on the outcome of expensive functions for which derivatives are assumed to be unavailable. Our algorithm combines derivative-free techniques with filter trust-region methods to keep the number of expensive function evaluations low and … Read more

On Duality Theory for Non-Convex Semidefinite Programming

In this paper, with the help of convex-like function, we discuss the duality theory for nonconvex semidefinite programming. Our contributions are: duality theory for the general nonconvex semidefinite programming when Slater’s condition holds; perfect duality for a special case of the nonconvex semidefinite programming for which Slater’s condition fails. We point out that the results … Read more

A quasi-Newton strategy for the sSQP method for variational inequality and optimization problems

The quasi-Newton strategy presented in this paper preserves one of the most important features of the stabilized Sequential Quadratic Programming method, the local convergence without constraint qualifications assumptions. It is known that the primal-dual sequence converges quadratically assuming only the second-order sufficient condition. In this work, we show that if the matrices are updated by … Read more

Total variation superiorization schemes in proton computed tomography image reconstruction

Purpose: Iterative projection reconstruction algorithms are currently the preferred reconstruction method in proton computed tomography (pCT). However, due to inconsistencies in the measured data arising from proton energy straggling and multiple Coulomb scattering, noise in the reconstructed image increases with successive iterations. In the current work, we investigated the use of total variation superiorization (TVS) … Read more

Templates for Convex Cone Problems with Applications to Sparse Signal Recovery

This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fi elds. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal first-order method. A … Read more

The Split Variational Inequality Problem

We propose a new variational problem which we call the Split Variational Inequality Problem (SVIP). It entails finding a solution of one Variational Inequality Problem (VIP), the image of which under a given bounded linear transformation is a solution of another VIP. We construct iterative algorithms that solve such problems, under reasonable conditions, in Hilbert … Read more

Trade-off studies in blackbox optimization

This paper proposes a framework for trade-off analyses of blackbox constrained optimization problems. Two strategies are developed to show the trade-off of the optimal objective function value with tightening or loosening general constraints. These are a simple method which may be performed immediately after a single optimization and a detailed method performing biobjective optimization on … Read more

Elementary optimality conditions for nonlinear SDPs

The goal of this paper is an easy and self-contained presentation of optimality conditions for nonlinear semidefinite programs concentrating on the differences between nonlinear semidefinite programs and nonlinear programs. Citation Technical Report, Department of Mathematics, Universit\”at D\”usseldorf. Article Download View Elementary optimality conditions for nonlinear SDPs

A Practical Relative Error Criterion for Augmented Lagrangians

This paper develops a new error criterion for the approximate minimization of augmented Lagrangian subproblems. This criterion is practical in the sense that it requires only information that is ordinarily readily available, such as the gradient (or a subgradient) of the augmented Lagrangian. It is also “relative” in the sense of relative error criteria for … Read more