On the Relationship between Bilevel Decomposition Algorithms and Direct Interior-Point Methods

Engineers have been using \emph{bilevel decomposition algorithms} to solve certain nonconvex large-scale optimization problems arising in engineering design projects. These algorithms transform the large-scale problem into a bilevel program with one upper-level problem (the master problem) and several lower-level problems (the subproblems). Unfortunately, there is analytical and numerical evidence that some of these commonly used … Read more

On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming

We present a primal-dual interior-point algorithm with a filter line-search method for nonlinear programming. Local and global convergence properties of this method were analyzed in previous work. Here we provide a comprehensive description of the algorithm, including the feasibility restoration phase for the filter method, second-order corrections, and inertia correction of the KKT matrix. Heuristics … Read more

Solving nonconvex SDP problems of structural optimization with stability control

The goal of this paper is to formulate and solve structural optimization problems with constraints on the global stability of the structure. The stability constraint is based on the linear buckling phenomenon. We formulate the problem as a nonconvex semidefinite programming problem and introduce an algorithm based on the Augmented Lagrangian method combined with the … Read more

On the modeling and control of delamination processes

This paper is motivated by problem of optimal shape design of laminated elastic bodies. We use a recently introduced model of delamination, based on minimization of potential energy which includes the free (Gibbs-type) energy and (pseudo)potential of dissipative forces, to introduce and analyze a special mathematical program with equilibrium constraints. The equilibrium is governed by … Read more

On an Approximation of the Hessian of the Lagrangian

In the context of SQP methods or, more recently, of sequential semidefinite programming methods, it is common practice to construct a positive semidefinite approximation of the Hessian of the Lagrangian. The Hessian of the augmented Lagrangian is a suitable approximation as it maintains local superlinear convergence under appropriate assumptions. In this note we give a … Read more

Some Properties of Regularization and Penalization Schemes for MPECs

Some properties of regularized and penalized nonlinear programming formulations of mathematical programs with equilibrium constraints (MPECs) are described. The focus is on the properties of these formulations near a local solution of the MPEC at which strong stationarity and a second-order sufficient condition are satisfied. In the regularized formulations, the complementarity condition is replaced by … Read more

An interior-point L1-penalty method for nonlinear optimization

A mixed interior/exterior-point method for nonlinear programming is described, that handles constraints by an L1-penalty function. A suitable decomposition of the penalty terms and embedding of the problem into a higher-dimensional setting leads to an equivalent, surprisingly regular, reformulation as a smooth penalty problem only involving inequality constraints. The resulting problem may then be tackled … Read more

Sums of Squares Relaxations of Polynomial Semidefinite Programs

A polynomial SDP (semidefinite program) minimizes a polynomial objective function over a feasible region described by a positive semidefinite constraint of a symmetric matrix whose components are multivariate polynomials. Sums of squares relaxations developed for polynomial optimization problems are extended to propose sums of squares relaxations for polynomial SDPs with an additional constraint for the … Read more

A limited memory algorithm for inequality constrained minimization

A method for solving inequality constrained minimization problems is described. The algorithm is based on a primal-dual interior point approach, with a line search globalization strategy. A quasi-Newton technique (BFGS) with limited memory storage is used to approximate the second derivatives of the functions. The method is especially intended for solving problems with a large … Read more

Interior-Point Algorithms, Penalty Methods and Equilibrium Problems

In this paper we consider the question of solving equilibrium problems—formulated as complementarity problems and, more generally, mathematical programs with equilibrium constraints (MPEC’s)—as nonlinear programs, using an interior-point approach. These problems pose theoretical difficulties for nonlinear solvers, including interior-point methods. We examine the use of penalty methods to get around these difficulties, present an example … Read more