The Generalized Trust Region Subproblem

The \emph{interval bounded generalized trust region subproblem} (GTRS) consists in minimizing a general quadratic objective, $q_0(x) \rightarrow \min$, subject to an upper and lower bounded general quadratic constraint, $\ell \leq q_1(x) \leq u$. This means that there are no definiteness assumptions on either quadratic function. We first study characterizations of optimality for this \emph{implicitly} convex … Read more

Kullback-Leibler Divergence Constrained Distributionally Robust Optimization

In this paper we study distributionally robust optimization (DRO) problems where the ambiguity set of the probability distribution is defined by the Kullback-Leibler (KL) divergence. We consider DRO problems where the ambiguity is in the objective function, which takes a form of an expectation, and show that the resulted minimax DRO problems can be formulated … Read more

Hardness and Approximation Results for hBcBall Constrained Homogeneous Polynomial Optimization Problems

In this paper, we establish hardness and approximation results for various $L_p$-ball constrained homogeneous polynomial optimization problems, where $p \in [2,\infty]$. Specifically, we prove that for any given $d \ge 3$ and $p \in [2,\infty]$, both the problem of optimizing a degree-$d$ homogeneous polynomial over the $L_p$-ball and the problem of optimizing a degree-$d$ multilinear … Read more

Complexity of Ten Decision Problems in Continuous Time Dynamical Systems

We show that for continuous time dynamical systems described by polynomial differential equations of modest degree (typically equal to three), the following decision problems which arise in numerous areas of systems and control theory cannot have a polynomial time (or even pseudo-polynomial time) algorithm unless P=NP: local attractivity of an equilibrium point, stability of an … Read more

Obtaining Quadratic Models of Noisy Functions

When derivatives of a nonlinear objective function are unavailable, many derivative- free optimization algorithms rely on interpolation-based models of the function. But what if the function values are contaminated by noise, as in most of the simulation- based problems typically encountered in this area? We propose to obtain linear and quadratic models by using knowledge … Read more

Quadratic combinatorial optimization using separable underestimators

Binary programs with a quadratic objective function are NP-hard in general, even if the linear optimization problem over the same feasible set is tractable. In this paper, we address such problems by computing quadratic global underestimators of the objective function that are separable but not necessarily convex. Exploiting the binary constraint on the variables, a … Read more

Hybrid LP/SDP Bounding Procedure

The principal idea of this paper is to exploit Semidefinite Programming (SDP) relaxation within the framework provided by Mixed Integer Nonlinear Programming (MINLP) solvers when tackling Binary Quadratic Problems (BQP). SDP relaxation is well-known to provide strong bounds for BQP in practice. However, the method is not typically implemented in many state-of-the-art MINLP solvers based … Read more

A Reliable Affine Relaxation Method for Global Optimization

An automatic method for constructing linear relaxations of constrained global optimization problems is proposed. Such a construction is based on affine and interval arithmetics and uses operator overloading. These linear programs have exactly the same numbers of variables and of inequality constraints as the given problems. Each equality constraint is replaced by two inequalities. This … Read more

Coordinate Search Algorithms in Multilevel Optimization

Many optimization problems of practical interest arise from the discretization of continuous problems. Classical examples can be found in calculus of variations, optimal control and image processing. In recent years a number of strategies have been proposed for the solution of such problems, broadly known as multilevel methods. Inspired by classical multigrid schemes for linear … Read more

A Globally Convergent Primal-Dual Active-Set Framework for Large-Scale Convex Quadratic Optimization

We present a primal-dual active-set framework for solving large-scale convex quadratic optimization problems (QPs). In contrast to classical active-set methods, our framework allows for multiple simultaneous changes in the active- set estimate, which often leads to rapid identification of the optimal active-set regardless of the initial estimate. The iterates of our framework are the active-set … Read more