On the Moreau-Yosida regularization of the vector k-norm related functions

In this paper, we conduct a thorough study on the first and second order properties of the Moreau-Yosida regularization of the vector $k$-norm function, the indicator function of its epigraph, and the indicator function of the vector $k$-norm ball. We start with settling the vector $k$-norm case via applying the existing breakpoint searching algorithms to … Read more

Finding largest small polygons with GloptiPoly

A small polygon is a convex polygon of unit diameter. We are interested in small polygons which have the largest area for a given number of vertices $n$. Many instances are already solved in the literature, namely for all odd $n$, and for $n=4, 6$ and $8$. Thus, for even $n\geq 10$, instances of this … Read more

A Dwindling Filter Line Search Method for Unconstrained Optimization

In this paper, we propose a new dwindling multidimensional filter second-order line search method for solving large-scale unconstrained optimization problems. Usually, the multidimensional filter is constructed with a fixed envelope, which is a strict condition for the gradient vectors. A dwindling multidimensional filter technique, which is a modification and improvement of the original multidimensional filter, … Read more

A Perry Descent Conjugate Gradient Method with Restricted Spectrum

A new nonlinear conjugate gradient method, based on Perry’s idea, is presented. And it is shown that its sufficient descent property is independent of any line search and the eigenvalues of $P_{k+1}^{\T}P_{k+1}$ are bounded above, where $P_{k+1}$ is the iteration matrix of the new method. Thus, the global convergence is proven by the spectral analysis … Read more

Snow water equivalent estimation using blackbox optimization

Accurate measurements of snow water equivalent (SWE) is an important factor in managing water resources for hydroelectric power generation. SWE over a catchment area may be estimated via kriging on measures obtained by snow monitoring devices positioned at strategic locations. The question studied in this paper is to find the device locations that minimize the … Read more

Second-Order-Cone Constraints for Extended Trust-Region Subproblems

The classical trust-region subproblem (TRS) minimizes a nonconvex quadratic objective over the unit ball. In this paper, we consider extensions of TRS having extra constraints. When two parallel cuts are added to TRS, we show that the resulting nonconvex problem has an exact representation as a semidefinite program with additional linear and second-order-cone constraints. For … Read more

Use of quadratic models with mesh adaptive direct search for constrained black box optimization

We consider a derivative-free optimization, and in particular black box optimization, where the functions to be minimized and the functions representing the constraints are given by black boxes without derivatives. Two fundamental families of methods are available: model-based methods and directional direct search algorithms. This work exploits the flexibility of the second type of methods … Read more

Convergence analysis of a proximal Gauss-Newton method

An extension of the Gauss-Newton algorithm is proposed to find local minimizers of penalized nonlinear least squares problems, under generalized Lipschitz assumptions. Convergence results of local type are obtained, as well as an estimate of the radius of the convergence ball. Some applications for solving constrained nonlinear equations are discussed and the numerical performance of … Read more

Globally Solving Nonconvex Quadratic Programming Problems via Completely Positive Programming

Nonconvex quadratic programming (QP) is an NP-hard problem that optimizes a general quadratic function over linear constraints. This paper introduces a new global optimization algorithm for this problem, which combines two ideas from the literature—finite branching based on the first-order KKT conditions and polyhedral-semidefinite relaxations of completely positive (or copositive) programs. Through a series of … Read more

Updating the regularization parameter in the adaptive cubic regularization algorithm

The adaptive cubic regularization method [Cartis, Gould, Toint, 2009-2010] has been recently proposed for solving unconstrained minimization problems. At each iteration of this method, the objective function is replaced by a cubic approximation which comprises an adaptive regularization parameter whose role is related to the local Lipschitz constant of the objective’s Hessian. We present new … Read more