A Retrospective Filter Trust Region Algorithm For Unconstrained Optimization

In this paper, we propose a retrospective filter trust region algorithm for unconstrained optimization, which is based on the framework of the retrospective trust region method and associated with the technique of the multi dimensional filter. The new algorithm gives a good estimation of trust region radius, relaxes the condition of accepting a trial step … Read more

Copositivity and constrained fractional quadratic problems

We provide Completely Positive and Copositive Programming formulations for the Constrained Fractional Quadratic Problem (CFQP) and Standard Fractional Quadratic Problem (StFQP). Based on these formulations, Semidefinite Programming (SDP) relaxations are derived for finding good lower bounds to these fractional programs, which are used in a global optimization branch-and-bound approach. Applications of the CFQP and StFQP, … Read more

A heuristic approach for packing rectangles in convex regions.

In this paper we propose a heuristic approach for the problem of packing equal rectangles within a convex region. The approach is based on an Iterated Local Search scheme (or, using a terminology employed for continuous problems, a Monotonic Basin Hopping), in which the key step is the perturbation move. Different perturbation moves, both combinatorial … Read more

Bilevel Derivative-Free Optimization and its Application to Robust Optimization

We address bilevel programming problems when the derivatives of both the upper and the lower level objective functions are unavailable. The core algorithms used for both levels are trust-region interpolation-based methods, using minimum Frobenius norm quadratic models when the number of points is smaller than the number of basis components. We take advantage of the … Read more

Worst Case Complexity of Direct Search

In this paper we prove that direct search of directional type shares the worst case complexity bound of steepest descent when sufficient decrease is imposed using a quadratic function of the step size parameter. This result is proved under smoothness of the objective function and using a framework of the type of GSS (generating set … Read more

A Non-monotonic Method for Large-scale Nonnegative Least Squares

We present a new algorithm for nonnegative least-squares (NNLS). Our algorithm extends the unconstrained quadratic optimization algorithm of Barzilai and Borwein (BB) (J. Barzilai and J. M. Borwein; Two-Point Step Size Gradient Methods. IMA J. Numerical Analysis; 1988.) to handle nonnegativity constraints. Our extension diff ers in several basic aspects from other constrained BB variants. The … Read more

Local path-following property of inexact interior methods in nonlinear programming

We study the local behavior of a primal-dual inexact interior point methods for solving nonlinear systems arising from the solution of nonlinear optimization problems or more generally from nonlinear complementarity problems. The algorithm is based on the Newton method applied to a sequence of perturbed systems that follows by perturbation of the complementarity equations of … Read more

Fast population game dynamics for dominant sets and other quadratic optimization problems

We propose a fast population game dynamics, motivated by the analogy with infection and immunization processes within a population of “players,” for finding dominant sets, a powerful graph-theoretical notion of a cluster. Each step of the proposed dynamics is shown to have a linear time/space complexity and we show that, under the assumption of symmetric … Read more

Separation and Relaxation for cones of quadratic forms

Let P be a pointed, polyhedral cone in R_n. In this paper, we study the cone C = cone{xx^T: x \in P} of quadratic forms. Understanding the structure of C is important for globally solving NP-hard quadratic programs over P. We establish key characteristics of C and construct a separation algorithm for C provided one … Read more

The BOBYQA algorithm for bound constrained optimization without derivatives

BOBYQA is an iterative algorithm for finding the minimum of a function F(x) subject to lower and upper bounds on the variables, F(x) being specified by a “black box” that returns the value F(x) for any feasible x. Each iteration employs a quadratic approximation Q to F that satisfies Q(y_j) = F(y_j), j=1,2,…,m, the interpolation … Read more