Automatic Differentiation of the Open CASCADE Technology CAD System and its coupling with an Adjoint CFD Solver

Automatic Differentiation (AD) is applied to the open-source CAD system Open CASCADE Technology using the AD software tool ADOL-C (Automatic Differentiation by OverLoading in C++). The differentiated CAD system is coupled with a discrete adjoint CFD solver, thus providing the first example of a complete differentiated design chain built from generic, multi-purpose tools. The design … Read more

Dantzig Wolfe decomposition and objective function convexification for binary quadratic problems: the cardinality constrained quadratic knapsack case

The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig-Wolfe decomposition and Quadratic Convex Reformulation principles. As a representative case study, we apply them to a cardinality constrained quadratic knapsack problem, providing extensive experimental insights. We show that … Read more

A randomized method for smooth convex minimization, motivated by probability maximization

We propose a randomized gradient method – or a randomized cutting-plane method from a dual viewpoint. From the primal viewpoint, our method bears a resemblance to the stochastic approximation family. But in contrast to stochastic approximation, the present method builds a model problem. Citation Kecskemet College, Pallasz Athene University. Izsaki ut 10, 6000 Kecskemet, Hungary; … Read more

An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

In this paper, we describe a new active-set algorithmic framework for minimizing a non-convex function over the unit simplex. At each iteration, the method makes use of a rule for identifying active variables (i.e., variables that are zero at a stationary point) and specific directions (that we name active-set gradient related directions) satisfying a new … Read more

Direct Search Methods on Reductive Homogeneous Spaces

Direct search methods are mainly designed for use in problems with no equality constraints. However, there are many instances where the feasible set is of measure zero in the ambient space and no mesh point lies within it. There are methods for working with feasible sets that are (Riemannian) manifolds, but not all manifolds are … Read more

A block symmetric Gauss-Seidel decomposition theorem for convex composite quadratic programming and its applications

For a symmetric positive semidefinite linear system of equations $\mathcal{Q} {\bf x} = {\bf b}$, where ${\bf x} = (x_1,\ldots,x_s)$ is partitioned into $s$ blocks, with $s \geq 2$, we show that each cycle of the classical block symmetric Gauss-Seidel (block sGS) method exactly solves the associated quadratic programming (QP) problem but added with an … Read more

BFGS convergence to nonsmooth minimizers of convex functions

The popular BFGS quasi-Newton minimization algorithm under reasonable conditions converges globally on smooth convex functions. This result was proved by Powell in 1976: we consider its implications for functions that are not smooth. In particular, an analogous convergence result holds for functions, like the Euclidean norm, that are nonsmooth at the minimizer. Citation Manuscript: School … Read more

Speed optimization over a path with heterogeneous arc costs

The speed optimization problem over a path aims to find a set of speeds over each arc of the given path to minimize the total cost, while respecting the time-window constraint at each node and speed limits over each arc. In maritime transportation, the cost represents fuel cost or emissions, so study of this problem … Read more

MPC as a DVI: Implications on Sampling Rates and Accuracy

We show that the evolution of a dynamical system driven by controls obtained by the solution of an embedded optimization problem (as done in MPC) can be cast as a differential variational inequality (DVI). The DVI abstraction reveals that standard sampled-data MPC implementations (in which the control law is computed using states that are sampled … Read more

Solving sparse polynomial optimization problems with chordal structure using the sparse, bounded-degree sum-of-squares hierarchy

The sparse bounded degree sum-of-squares (sparse-BSOS) hierarchy of Weisser, Lasserre and Toh [arXiv:1607.01151,2016] constructs a sequence of lower bounds for a sparse polynomial optimization problem. Under some assumptions, it is proven by the authors that the sequence converges to the optimal value. In this paper, we modify the hierarchy to deal with problems containing equality … Read more