Combinatorial Optimal Control of Semilinear Elliptic PDEs

Optimal control problems (OCP) containing both integrality and partial differential equation (PDE) constraints are very challenging in practice. The most wide-spread solution approach is to first discretize the problem, it results in huge and typically nonconvex mixed-integer optimization problems that can be solved to proven optimality only in very small dimensions. In this paper, we … Read more

A forward-backward dynamical approach to the minimization of the sum of a nonsmooth convex with a smooth nonconvex function

We address the minimization of the sum of a proper, convex and lower semicontinuous with a (possibly nonconvex) smooth function from the perspective of an implicit dynamical system of forward-backward type. The latter is formulated by means of the gradient of the smooth function and of the proximal point operator of the nonsmooth one. The … Read more

Nonlinear Programming Strategies on High-Performance Computers

We discuss structured nonlinear programming problems arising in control applications, and we review software and hardware capabilities that enable the efficient exploitation of such structures. We focus on linear algebra parallelization strategies and discuss how these interact and influence high-level algorithmic design elements required to enforce global convergence and deal with negative curvature in a … Read more

Bridging the Gap Between Multigrid, Hierarchical, and Receding-Horizon Control

We analyze the structure of the Euler-Lagrange conditions of a lifted long-horizon optimal control problem. The analysis reveals that the conditions can be solved by using block Gauss-Seidel schemes and we prove that such schemes can be implemented by solving sequences of short-horizon problems. The analysis also reveals that a receding-horizon control scheme is equivalent … Read more

Lower Bounds on Complexity of Lyapunov Functions for Switched Linear Systems

We show that for any positive integer $d$, there are families of switched linear systems—in fixed dimension and defined by two matrices only—that are stable under arbitrary switching but do not admit (i) a polynomial Lyapunov function of degree $\leq d$, or (ii) a polytopic Lyapunov function with $\leq d$ facets, or (iii) a piecewise … Read more

Convergence rates for forward-backward dynamical systems associated with strongly monotone inclusions

We investigate the convergence rates of the trajectories generated by implicit first and second order dynamical systems associated to the determination of the zeros of the sum of a maximally monotone operator and a monotone and Lipschitz continuous one in a real Hilbert space. We show that these trajectories strongly converge with exponential rate to … Read more

An extension of the projected gradient method to a Banach space setting with application in structural topology optimization

For the minimization of a nonlinear cost functional under convex constraints the relaxed projected gradient process is a well known method. The analysis is classically performed in a Hilbert space. We generalize this method to functionals which are differentiable in a Banach space. The search direction is calculated by a quadratic approximation of the cost … Read more

Second order forward-backward dynamical systems for monotone inclusion problems

We begin by considering second order dynamical systems of the from $\ddot x(t) + \Gamma (\dot x(t)) + \lambda(t)B(x(t))=0$, where $\Gamma: {\cal H}\rightarrow{\cal H}$ is an elliptic bounded self-adjoint linear operator defined on a real Hilbert space ${\cal H}$, $B: {\cal H}\rightarrow{\cal H}$ is a cocoercive operator and $\lambda:[0,+\infty)\rightarrow [0,+\infty)$ is a relaxation function depending … Read more

On an Extension of One-Shots Methods to Incorporate Additional Constraints

For design optimization tasks, quite often a so-called one-shot approach is used. It augments the solution of the state equation with a suitable adjoint solver yielding approximate reduced derivatives that can be used in an optimization iteration to change the design. The coordination of these three iterative processes is well established when only the state … Read more

Error estimates for the Euler discretization of an optimal control problem with first-order state constraints

We study the error introduced in the solution of an optimal control problem with first order state constraints, for which the trajectories are approximated with a classical Euler scheme. We obtain order one approximation results in the $L^\infty$ norm (as opposed to the order 2/3 obtained in the literature). We assume either a strong second … Read more