Second order analysis of state-constrained control-affine problems

In this article we establish new second order necessary and sufficient optimality conditions for a class of control-affine problems with a scalar control and a scalar state constraint. These optimality conditions extend to the constrained state framework the Goh transform, which is the classical tool for obtaining an extension of the Legendre condition. We propose … Read more

High Detail Stationary Optimization Models for Gas Networks: Validation and Results

Due to strict regulatory rules in combination with complex nonlinear physics, major gas network operators in Germany and Europe face hard planning problems that call for optimization. In part 1 of this paper we have developed a suitable model hierarchy for that purpose. Here we consider the more practical aspects of modeling. We validate individual … Read more

Preconditioning of Active-Set Newton Methods for PDE-constrained Optimal Control Problems

We address the problem of preconditioning a sequence of saddle point linear systems arising in the solution of PDE-constrained optimal control problems via active-set Newton methods, with control and (regularized) state constraints. We present two new preconditioners based on a full block matrix factorization of the Schur complement of the Jacobian matrices, where the active-set … Read more

Optimization of running strategies based on anaerobic energy and variations of velocity

We present new models, numerical simulations and rigorous analysis for the optimization of the velocity in a race. In a seminal paper, Keller (1973,1974) explained how a runner should determine his speed in order to run a given distance in the shortest time. We extend this analysis, based on the equation of motion and aerobic … Read more

Second-order necessary conditions in Pontryagin form for optimal control problems

In this report, we state and prove first- and second-order necessary conditions in Pontryagin form for optimal control problems with pure state and mixed control-state constraints. We say that a Lagrange multiplier of an optimal control problem is a Pontryagin multiplier if it is such that Pontryagin’s minimum principle holds, and we call optimality conditions … Read more

Second-order sufficient conditions for strong solutions to optimal control problems

In this report, given a reference feasible trajectory of an optimal control problem, we say that the quadratic growth property for bounded strong solutions holds if the cost function of the problem has a quadratic growth over the set of feasible trajectories with a bounded control and with a state variable sufficiently close to the … Read more

A SIMPLE TROLLEY-LIKE MODEL IN THE PRESENCE OF A NONLINEAR FRICTION AND A BOUNDED FUEL EXPENDITURE

We consider a problem of maximization of the distance traveled by a material point in the presence of a nonlinear friction under a bounded thrust and fuel expenditure. Using the maximum principle we obtain the form of optimal control and establish conditions under which it contains a singular subarc. This problem seems to be the … Read more

Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions

In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements … Read more

Complexity of Ten Decision Problems in Continuous Time Dynamical Systems

We show that for continuous time dynamical systems described by polynomial differential equations of modest degree (typically equal to three), the following decision problems which arise in numerous areas of systems and control theory cannot have a polynomial time (or even pseudo-polynomial time) algorithm unless P=NP: local attractivity of an equilibrium point, stability of an … Read more

On Perspective Functions and Vanishing Constraints in Mixed-Integer Nonlinear Optimal Control

Logical implications appear in a number of important mixed-integer nonlinear optimal control problems (MIOCPs). Mathematical optimization offers a variety of different formulations that are equivalent for boolean variables, but result in different relaxations. In this article we give an overview over a variety of different modeling approaches, including outer versus inner convexification, generalized disjunctive programming, … Read more