TMAC: A Toolbox of Modern Async-Parallel, Coordinate, Splitting, and Stochastic Methods

TMAC is a toolbox written in C++11 that implements algorithms based on a set of mod- ern methods for large-scale optimization. It covers a variety of optimization problems, which can be both smooth and nonsmooth, convex and nonconvex, as well as constrained and unconstrained. The algorithms implemented in TMAC, such as the coordinate up- date … Read more

Alternating Criteria Search: A Parallel Large Neighborhood Search Algorithm for Mixed Integer Programs

We present a parallel large neighborhood search framework for finding high quality primal solutions for generic Mixed Integer Programs (MIPs). The approach simultaneously solves a large number of sub-MIPs with the dual objective of reducing infeasibility and optimizing with respect to the original objective. Both goals are achieved by solving restricted versions of two auxiliary … Read more

Coordinate Friendly Structures, Algorithms and Applications

This paper focuses on coordinate update methods, which are useful for solving problems involving large or high-dimensional datasets. They decompose a problem into simple subproblems, where each updates one, or a small block of, variables while fixing others. These methods can deal with linear and nonlinear mappings, smooth and nonsmooth functions, as well as convex … Read more

A Distributed Interior-Point KKT Solver for Multistage Stochastic Optimization

Multistage stochastic optimization leads to NLPs over scenario trees that become extremely large when many time stages or fine discretizations of the probability space are required. Interior-point methods are well suited for these problems if the arising huge, structured KKT systems can be solved efficiently, for instance, with a large scenario tree but a moderate … Read more

Parallel Scenario Decomposition of Risk Averse 0-1 Stochastic Programs

In this paper, we extend a recently proposed scenario decomposition algorithm (Ahmed (2013)) for risk-neutral 0-1 stochastic programs to the risk-averse setting. Specifically, we consider risk-averse 0-1 stochastic programs with objective functions based on coherent risk measures. Using a dual representation of a coherent risk measure, we first derive an equivalent minimax reformulation of the … Read more

PIPS-SBB: A parallel distributed-memory branch-and-bound algorithm for stochastic mixed-integer programs

Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. To overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels … Read more

Column Generation based Alternating Direction Methods for solving MINLPs

Traditional decomposition based branch-and-bound algorithms, like branch-and-price, can be very efficient if the duality gap is not too large. However, if this is not the case, the branch-and-bound tree may grow rapidly, preventing the method to find a good solution. In this paper, we present a new decompositon algorithm, called ADGO (Alternating Direction Global Optimization … Read more

Scenario Decomposition for 0-1 Stochastic Programs: Improvements and Asynchronous Implementation

A recently proposed scenario decomposition algorithm for stochastic 0-1 programs finds an optimal solution by evaluating and removing individual solutions that are discovered by solving scenario subproblems. In this work, we develop an asynchronous, distributed implementation of the algorithm which has computational advantages over existing synchronous implementations of the algorithm. Improvements to both the synchronous … Read more

Nonstationary Direct Policy Search for Risk-Averse Stochastic Optimization

This paper presents an approach to non-stationary policy search for finite-horizon, discrete-time Markovian decision problems with large state spaces, constrained action sets, and a risk-sensitive optimality criterion. The methodology relies on modeling time variant policy parameters by a non-parametric response surface model for an indirect parametrized policy motivated by the Bellman equation. Through the interpolating … Read more

Nonlinear Programming Strategies on High-Performance Computers

We discuss structured nonlinear programming problems arising in control applications, and we review software and hardware capabilities that enable the efficient exploitation of such structures. We focus on linear algebra parallelization strategies and discuss how these interact and influence high-level algorithmic design elements required to enforce global convergence and deal with negative curvature in a … Read more