A Framework for Adaptive Open-pit Mining Planning under Geological Uncertainty

Mine planning optimization aims at maximizing the profit obtained from extracting valuable ore. Beyond its theoretical complexity (the open-pit mining problem with capacity constraints reduces to a knapsack problem with precedence constraints, which is NP-hard), practical instances of the problem usually involve a large to very large number of decision variables, typically of the order … Read more

On the exact separation of cover inequalities of maximum depth

We investigate the problem of exactly separating cover inequalities of maximum depth and we develop a pseudo-polynomial-time algorithm for this purpose. Compared to the standard method based on the maximum violation, computational experiments carried out on knapsack and multi-dimensional knapsack instances show that, with a cutting-plane method based on the maximum-depth criterion, we can optimize … Read more

Dynamic Node Packing

We propose a dynamic version of the classical node packing problem, also called the stable set or independent set problem. The problem is defined by a node set, a node weight vector, and an edge probability vector. For every pair of nodes, an edge is present or not according to an independent Bernoulli random variable … Read more

A Simulated Annealing Algorithm for the Directed Steiner Tree Problem

In \cite{siebert2019linear} the authors present a set of integer programs (IPs) for the Steiner tree problem, which can be used for both, the directed and the undirected setting of the problem. Each IP finds an optimal Steiner tree with a specific structure. A solution with the lowest cost, corresponds to an optimal solution to the … Read more

Equal Risk Pricing and Hedging of Financial Derivatives with Convex Risk Measures

In this paper, we consider the problem of equal risk pricing and hedging in which the fair price of an option is the price that exposes both sides of the contract to the same level of risk. Focusing for the first time on the context where risk is measured according to convex risk measures, we … Read more

Dynamic programming for the time-dependent traveling salesman problem with time windows

The recent growth of direct-to-consumer deliveries has stressed the importance of last-mile logistics, becoming one of the critical factors in city planning. One of the key factors lies in the last-mile deliveries, reaching in some cases nearly 50% of the overall parcel delivery cost. Different variants of the the well-known Traveling Salesman Problem (TSP) arise … Read more

Automatic generation of FPTASes for stochastic monotone dynamic programs made easier

In this paper we go one step further in the automatic generation of FPTASes for multi-stage stochastic dynamic programs with scalar state and action spaces, in where the cost-to-go functions have a monotone structure in the state variable. While there exist a few frameworks for automatic generation of FPTASes, so far none of them is … Read more

Randomized Sketching Algorithms for Low Memory Dynamic Optimization

This paper develops a novel limited-memory method to solve dynamic optimization problems. The memory requirements for such problems often present a major obstacle, particularly for problems with PDE constraints such as optimal flow control, full waveform inversion, and optical tomography. In these problems, PDE constraints uniquely determine the state of a physical system for a … Read more

Exact Methods for the Traveling Salesman Problem with Drone

Efficiently handling last-mile deliveries becomes more and more important nowadays. Using drones to support classical vehicles allows improving delivery schedules as long as efficient solution methods to plan last-mile deliveries with drones are available. We study exact solution approaches for some variants of the traveling salesman problem with drone (TSP-D) in which a truck and … Read more

Risk-Averse Optimal Control

In the context of multistage stochastic optimization, it is natural to consider nested risk measures, which originate by repeatedly composing risk measures, conditioned on realized observations. Starting from this discrete time setting, we extend the notion of nested risk measures to continuous time by adapting the risk levels in a time dependent manner. This time … Read more