Semi-infinite models for equilibrium selection

In their seminal work `A General Theory of Equilibrium Selection in Games’ (The MIT Press, 1988) Harsanyi and Selten introduce the notion of payoff dominance to explain how players select some solution of a Nash equilibrium problem from a set of nonunique equilibria. We formulate this concept for generalized Nash equilibrium problems, relax payoff dominance … Read more

Inefficiency of pure Nash equilibria in series-parallel network congestion games

We study the inefficiency of pure Nash equilibria in symmetric unweighted network congestion games defined over series-parallel networks. We introduce a quantity y(D) to upper bound the Price of Anarchy (PoA) for delay functions in class D. When D is the class of polynomial functions with highest degree p, our upper bound is 2^{p+1} − … Read more

Robust Integration of Electric Vehicles Charging Load in Smart Grid’s Capacity Expansion Planning

Battery charging of electric vehicles (EVs) needs to be properly coordinated by electricity producers to maintain network reliability. In this paper, we propose a robust approach to model the interaction between a large fleet of EV users and utilities in a long-term generation expansion planning problem. In doing so, we employ a robust multi-period adjustable … Read more

Nash Bargaining Partitioning in Decentralized Portfolio Management

In the context of decentralized portfolio management, understanding how to distribute a fixed budget among decentralized intermediaries is a relevant question for financial investors. We consider the Nash bargaining partitioning for a class of decentralized investment problems, where intermediaries are in charge of the portfolio construction in heterogeneous local markets and act as risk/disutility minimizers. … Read more

Solving Multiplicative Programs by Binary-encoding the Multiplication Operation

Multiplicative programs in the form of maximization and/or minimization have numerous applications in conservation planning, game theory, and multi-objective optimization settings. In practice, multiplicative programs are challenging to solve because of their multiplicative objective function (a product of continuous or integer variables). These challenges are twofold: 1. As the number of factors in the objective … Read more

An Exact Projection-Based Algorithm for Bilevel Mixed-Integer Problems with Nonlinearities

We propose an exact global solution method for bilevel mixed-integer optimization problems with lower-level integer variables and including nonlinear terms such as, \eg, products of upper-level and lower-level variables. Problems of this type are extremely challenging as a single-level reformulation suitable for off-the-shelf solvers is not available in general. In order to solve these problems … Read more

Cost-Sharing Mechanism Design for Ride-Sharing

In this paper, we focus on the cost-sharing problem for ride-sharing that determines how to allocate the total ride cost between the driver and the passengers. We identify the properties that a desirable cost-sharing mechanism should have and develop a general framework which can be used to create specific cost-sharing mechanisms. We propose specific mechanisms … Read more

The Price of Anarchy in Series-Parallel Network Congestion Games

We study the inefficiency of pure Nash equilibria in symmetric network congestion games defined over series-parallel networks with affine edge delays. For arbitrary networks, Correa (2019) proved a tight upper bound of 5/2 on the PoA. On the other hand, for extension-parallel networks, a subclass of series-parallel networks, Fotakis (2010) proved that the PoA is … Read more

An equivalent mathematical program for games with random constraints

This paper shows that there exists a Nash equilibrium of an n-player chance-constrained game for elliptically symmetric distributions. For a certain class of payoff functions, we suitably construct an equivalent mathematical program whose global maximizer is a Nash equilibrium. ArticleDownload View PDF

Valid Inequalities for Mixed Integer Bilevel Linear Optimization Problems

Despite the success of branch-and-cut methods for solving mixed integer bilevel linear optimization problems (MIBLPs) in practice, there are still gaps in both the theory and practice surrounding these methods. In the first part of this paper, we lay out a basic theory of valid inequalities and cutting-plane methods for MIBLPs that parallels the existing … Read more