On the extension of the Hager-Zhang conjugate gradient method for vector optimization

The extension of the Hager-Zhang (HZ) nonlinear conjugate gradient method for vector optimization is discussed in the present research. In the scalar minimization case, this method generates descent directions whenever, for example, the line search satisfies the standard Wolfe conditions. We first show that, in general, the direct extension of the HZ method for vector … Read more

Performance indicators in multiobjective optimization

In recent years, the development of new algorithms for multiobjective optimization has considerably grown. A large number of performance indicators has been introduced to measure the quality of Pareto front approximations produced by these algorithms. In this work, we propose a review of a total of 63 performance indicators partitioned into four groups according to … Read more

Approximations for Pareto and Proper Pareto solutions and their KKT conditions

There has been numerous amount of studies on proper Pareto points in multiobjective optimization theory. Geoffrion proper points are one of the most prevalent form of proper optimality. Due to some convergence issues a restricted version of these proper points, Geoffrion proper points with preset bounds has been introduced recently. Since solution of any algorithm … Read more

Nonmonotone line searches for unconstrained multiobjective optimization problems

In the last two decades, many descent methods for multiobjective optimization problems were proposed. In particular, the steepest descent and the Newton methods were studied for the unconstrained case. In both methods, the search directions are computed by solving convex subproblems, and the stepsizes are obtained by an Armijo-type line search. As a consequence, the … Read more

Numerical Results for the Multi-objective Trust Region Algorithm MHT

A set of 78 test examples is presented for the trust region method MHT described in J. Thomann, G. Eichfelder, A trust region algorithm for heterogeneous multi-objective optimization, 2018 (available as preprint: http://optimization-online.org/DB_HTML/2018/03/6495.html) . It is designed for multi-objective heterogeneous optimization problems where one of the objective functions is an expensive black-box function, for example … Read more

Multi-objective Ranking and Selection: Optimal Sampling Laws and Tractable Approximations via SCORE

Consider the multi-objective ranking and selection (MORS) problem in which we select the Pareto-optimal set from a finite set of systems evaluated on three or more stochastic objectives. Solving this problem is difficult because we must determine how to allocate a simulation budget among the systems to minimize the probability that any systems are misclassified. … Read more

A Wolfe line search algorithm for vector optimization

In a recent paper, Lucambio Pérez and Prudente extended the Wolfe conditions for the vector-valued optimization. Here, we propose a line search algorithm for finding a step-size satisfying the strong Wolfe conditions in the vector optimization setting. Well definiteness and finite termination results are provided. We discuss practical aspects related to the algorithm and present … Read more

Branching with Hyperplanes in the Criterion Space: the Frontier Partitioner Algorithm for Biobjective Integer Programming

We present an algorithm for finding the complete Pareto frontier of biobjective integer programming problems. The method is based on the solution of a finite number of integer programs. The feasible sets of the integer programs are built from the original feasible set, by adding cuts that separate efficient solutions. Providing the existence of an … Read more

A new concept of slope for set-valued maps and applications in set optimization studied with Kuroiwa’s set approach

In this paper, scalarizing functions defined with the help of the Hiriart-Urruty signed distance are used to characterize set order relations and weak optimal solutions in set optimization studied with Kuroiwa’s set approach and to introduce a new concept of slope for a set-valued map. It turns out that this slope possesses most properties of … Read more

Bi-objective Simulation Optimization on Integer Lattices using the Epsilon-Constraint Method in a Retrospective Approximation Framework

We consider multi-objective simulation optimization (MOSO) problems on integer lattices, that is, nonlinear optimization problems in which multiple simultaneous objective functions can only be observed with stochastic error, e.g., as output from a Monte Carlo simulation model. The solution to a MOSO problem is the efficient set, which is the set of all feasible decision … Read more