A unified scheme for scalarization in set optimization

In this work, we propose a new scheme for scalarization in set optimization studied with the Kuroiwa set appoach. First, we define an abstract scalarizing function possessing properties such as global Lipschizity, sublinearity, cone monotonicity, cone representation property, cone interior representation property and uniform positivity. Next, we use this function to define the so called … Read more

Convergence of Trajectory Following Dynamic Programming algorithms for multistage stochastic problems without finite support assumptions

We introduce a class of algorithms, called Trajectory Following Dynamic Programming (TFDP) algorithms, that iteratively refines approximation of cost-to-go functions of multistage stochastic problems with independent random variables. This framework encompasses most variants of the Stochastic Dual Dynamic Programming algorithm. Leveraging a Lipschitz assumption on the expected cost-to-go functions, we provide a new convergence and … Read more

Solving large-scale unit-commitment problems using dual dynamic programming and open-source solvers

The astonishing dimensions and complexity of power systems render them impossible to be managed without the help of cutting-edge software. Due to a lack of scalable, reliable and well documented free and open-source solutions, system operators, regulators, and government agencies often rely on proprietary software to provide them information that ultimately will be used to … Read more

Data Envelopment Analysis of two-stage processes: An alternative (non-conventional) approach

Network data envelopment analysis (NDEA) is an extension of standard data envelopment analysis that models the efficiency assessment of DMUs by considering their internal structure. While in standard DEA the DMU is regarded as a single process, in NDEA the DMU is viewed as a network of interconnected sub-processes (stages, divisions), where the flow of … Read more

DiversiTree: A New Method to Efficiently Compute Diverse Sets of Near-Optimal Solutions to Mixed-Integer Optimization Problems

While most methods for solving mixed-integer optimization problems compute a single optimal solution, a diverse set of near-optimal solutions can often lead to improved outcomes. We present a new method for finding a set of diverse solutions by emphasizing diversity within the search for near-optimal solutions. Specifically, within a branch-and-bound framework, we investigated parameterized node … Read more

Robust Phi-Divergence MDPs

In recent years, robust Markov decision processes (MDPs) have emerged as a prominent modeling framework for dynamic decision problems affected by uncertainty. In contrast to classical MDPs, which only account for stochasticity by modeling the dynamics through a stochastic process with a known transition kernel, robust MDPs additionally account for ambiguity by optimizing in view … Read more

A Reduced Jacobian Scheme with Full Convergence for Multicriteria Optimization

In this paper, we propose a variant of the reduced Jacobian method (RJM) introduced by El Maghri and Elboulqe in [JOTA, 179 (2018) 917–943] for multicriteria optimization under linear constraints. Motivation is that, contrarily to RJM which has only global convergence to Pareto KKT-stationary points in the classical sense of accumulation points, this new variant … Read more

A Proximal Gradient Method for Multi-objective Optimization Problems Using Bregman Functions

In this paper, a globally convergent proximal gradient method is developed for convex multi-objective optimization problems using Bregman distance. The proposed method is free from any kind of a priori chosen parameters or ordering information of objective functions. At every iteration of the proposed method, a subproblem is solved to find a descent direction. This … Read more

Integral Global Optimality Conditions and an Algorithm for Multiobjective Problems

In this work, we propose integral global optimality conditions for multiobjective problems not necessarily differentiable. The integral characterization, already known for single objective problems, are extended to multiobjective problems by weighted sum and Chebyshev weighted scalarizations. Using this last scalarization, we propose an algorithm for obtaining an approximation of the weak Pareto front whose effectiveness … Read more

Duality assertions in vector optimization w.r.t. relatively solid convex cones in real linear spaces

We derive duality assertions for vector optimization problems in real linear spaces based on a scalarization using recent results concerning the concept of relative solidness for convex cones (i.e., convex cones with nonempty intrinsic cores). In our paper, we consider an abstract vector optimization problem with generalized inequality constraints and investigate Lagrangian type duality assertions … Read more