A Fast and Robust Algorithm for Solving Biobjective Mixed Integer Programs

We present a fast and robust algorithm for solving biobjective mixed integer programs. The algorithm extends and merges ideas from two existing methods: the Boxed Line Method and the epsilon-Tabu Method. We demonstrate its efficacy in an extensive computational study. We also demonstrate that it is capable of producing a high-quality approximation of the nondominated … Read more

Exact algorithms for the 0-1 Time-bomb Knapsack Problem

We consider a stochastic version of the 0–1 Knapsack Problem in which, in addition to profit and weight, each item is associated with a probability of exploding and destroying all the contents of the knapsack. The objective is to maximize the expected profit of the selected items. The resulting problem, denoted as 0–1 Time-Bomb Knapsack … Read more

Application-Driven Learning: A Closed-Loop Prediction and Optimization Approach Applied to Dynamic Reserves and Demand Forecasting

Forecasting and decision-making are generally modeled as two sequential steps with no feedback, following an open-loop approach. In this paper, we present application-driven learning, a new closed-loop framework in which the processes of forecasting and decision-making are merged and co-optimized through a bilevel optimization problem. We present our methodology in a general format and prove … Read more

Optimal Hospital Care Scheduling During the SARS-CoV-2 Pandemic

The COVID-19 pandemic has seen dramatic demand surges for hospital care that have placed a severe strain on health systems worldwide. As a result, policy makers are faced with the challenge of managing scarce hospital capacity so as to reduce the backlog of non-COVID patients whilst maintaining the ability to respond to any potential future … Read more

Optimizing Active Surveillance for Prostate Cancer Using Partially Observable Markov Decision Processes

We describe a finite-horizon partially observable Markov decision process (POMDP) approach to optimize decisions about whether and when to perform biopsies for patients on active surveillance for prostate cancer. The objective is to minimize a weighted combination of two criteria, the number of biopsies to conduct over a patient’s lifetime and the delay in detecting … Read more

A Framework for Multi-stage Bonus Allocation in Meal-Delivery Platform

Online meal delivery is undergoing explosive growth, as this service is becoming increasingly fashionable. A meal delivery platform aims to provide efficient services for customers and restaurants. However, in reality, several hundred thousand orders are canceled per day in the Meituan meal delivery platform since they are not accepted by the crowdsoucing drivers, which is … Read more

Solving set-valued optimization problems using a multiobjective approach

Set-valued optimization using the set approach is a research topic of high interest due to its practical relevance and numerous interdependencies to other fields of optimization. However, it is a very difficult task to solve these optimzation problems even for specific cases. In this paper we study set-valued optimization problems and develop a multiobjective optimization … Read more

A simulation-based optimization approach for the calibration of a discrete event simulation model of an emergency department

Accurate modeling of the patient flow within an Emergency Department (ED) is required by all studies dealing with the increasing and well-known problem of overcrowding. Since Discrete Event Simulation (DES) models are often adopted with the aim of assessing solutions for reducing the impact of this worldwide phenomenon, an accurate estimation of the service time … Read more

An Axiomatic Distance Methodology for Aggregating Multimodal Evaluations

This work introduces a multimodal data aggregation methodology featuring optimization models and algorithms for jointly aggregating heterogenous ordinal and cardinal evaluation inputs into a consensus evaluation. Mathematical modeling components are derived to enforce three types of logical couplings between the collective ordinal and cardinal evaluations: Rating and ranking preferences, numerical and ordinal estimates, and rating … Read more

A Steepest Descent Method for Set Optimization Problems with Set-Valued Mappings of Finite Cardinality

In this paper, we study a first-order solution method for a particular class of set optimization problems where the solution concept is given by the set approach. We consider the case in which the set-valued objective mapping is identified by a finite number of continuously differentiable selections. The corresponding set optimization problem is then equivalent … Read more