Worst-case-expectation approach to optimization under uncertainty

In this paper we discuss multistage programming with the data process subject to uncertainty. We consider a situation were the data process can be naturally separated into two components, one can be modeled as a random process, with a specified probability distribution, and the other one can be treated from a robust (worst case) point … Read more

Deriving robust and globalized robust solutions of uncertain linear programs with general convex uncertainty sets

We propose a new way to derive tractable robust counterparts of a linear program by using the theory of Beck and Ben-Tal (2009) on the duality between the robust (“pessimistic”) primal problem and its “optimistic” dual. First, we obtain a new {\it convex} reformulation of the dual problem of a robust linear program, and then … Read more

Robust combinatorial optimization with variable budgeted uncertainty

We introduce a new model for robust combinatorial optimization where the uncertain parameters belong to the image of multifunctions of the problem variables. In particular, we study the variable budgeted uncertainty, an extension of the budgeted uncertainty introduced by Bertsimas and Sim. Variable budgeted uncertainty can provide the same probabilistic guarantee as the budgeted uncertainty … Read more

Distributionally Robust Multi-Item Newsvendor Problems with Multimodal Demand Distributions

We present a risk-averse multi-dimensional newsvendor model for a class of products whose demands are strongly correlated and subject to fashion trends that are not fully understood at the time when orders are placed. The demand distribution is known to be multimodal in the sense that there are spatially separated clusters of probability mass but … Read more

The robust vehicle routing problem with time windows

This paper addresses the robust vehicle routing problem with time windows. We are motivated by a problem that arises in maritime transportation where delays are frequent and should be taken into account. Our model only allows routes that are feasible for all values of the travel times in a predetermined uncertainty polytope, which yields a … Read more

Pricing Conspicuous Consumption Products in Recession Periods with Uncertain Strength

We compare different approaches of optimization under uncertainty in the context of pricing strategies for conspicuous consumption products in recession periods of uncertain duration and strength. We consider robust worst-case ideas and how the concepts of Value at Risk (VaR) and Conditional Value at Risk (CVaR) can be incorporated efficiently. The approaches are generic in … Read more

Risk Analysis 101: fooled by local robustness … again!

This article explains, again, why radius of stability models, such as info-gap’s robustness model, are models of local robustness and why they are therefore unsuitable for the treatment of severe uncertainty. Citation Working Paper SM-12-2, Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia. Article Download View Risk Analysis 101: fooled by … Read more

Pareto Efficiency in Robust Optimization

This paper formalizes and adapts the well known concept of Pareto efficiency in the context of the popular robust optimization (RO) methodology. We argue that the classical RO paradigm need not produce solutions that possess the associated property of Pareto optimality, and illustrate via examples how this could lead to inefficiencies and sub-optimal performance in … Read more

A Probabilistic-Driven Search Algorithm for solving a Class of Optimization Problems

In this paper we introduce a new numerical optimization technique, a Probabilistic-Driven Search Algorithm. This algorithm has the following characteristics: 1) In each iteration of loop, the algorithm just changes the value of k variables to find a new solution better than the current one; 2) In each variable of the solution of the problem, … Read more

CHARACTERIZATIONS OF FULL STABILITY IN CONSTRAINED OPTIMIZATION

This paper is mainly devoted to the study of the so-called full Lipschitzian stability of local solutions to finite-dimensional parameterized problems of constrained optimization, which has been well recognized as a very important property from both viewpoints of optimization theory and its applications. Based on second- order generalized differential tools of variational analysis, we obtain … Read more