Robust Markov Decision Processes

Markov decision processes (MDPs) are powerful tools for decision making in uncertain dynamic environments. However, the solutions of MDPs are of limited practical use due to their sensitivity to distributional model parameters, which are typically unknown and have to be estimated by the decision maker. To counter the detrimental effects of estimation errors, we consider … Read more

Risk Adjusted Budget Allocation Models with Application in Homeland Security

This paper presents and studies several models for multi-criterion budget allocation problems under uncertainty. We start by introducing a robust weighted objective model, which is developed further using the concept of stochastic dominance to incorporate risk averseness of the decision maker. A budget minimization variant of this model is also presented. We use a Sample … Read more

Prediction Range Estimation from Noisy Raman Spectra

Inferences need to be drawn in biological systems using experimental multivariate data. The number of samples collected in many such experiments is small, and the data is noisy. We present and study the performance of a robust optimization (RO) model for such situations. We adapt this model to generate a minimum and a maximum estimation … Read more

Locating a competitive facility in the plane with a robustness criterion

A new continuous location model is presented and embedded in the literature on robustness in facility location. The multimodality of the model is investigated, and a branch and bound method based on dc optimization is described. Numerical experience is reported, showing that the developed method allows one to solve in a few seconds problems with … Read more

An Efficient Decomposition Algorithm for Static, Stochastic, Linear and Mixed-Integer Linear Programs with Conditional-Value-at-Risk Constraints

We present an efficient decomposition algorithm for single-stage, stochastic linear programs, where conditional value at risk (CVaR) appears as a risk measure in multiple constraints. It starts with a well-known nonlinear, convex reformulation of conditional value at risk constraints, and establishes the connection to a combinatorially large polyhedral representation of the convex feasible set induced … Read more

Worst-Case Violation of Sampled Convex Programs for Optimization with Uncertainty

Uncertain programs have been developed to deal with optimization problems including inexact data, i.e., uncertainty. A deterministic approach called robust optimization is commonly applied to solve these problems. Recently, Calafiore and Campi have proposed a randomized approach based on sampling of constraints, where the number of samples is determined so that only small portion of … Read more

Nonconvex Robust Optimization

We propose a novel robust optimization technique, which is applicable to nonconvex and simulation-based problems. Robust optimization finds decisions with the best worst-case performance under uncertainty. If constraints are present, decisions should also be feasible under perturbations. In the real-world, many problems are nonconvex and involve computer-based simulations. In these applications, the relationship between decision … Read more

Two-Stage Robust Unit Commitment Problem

As an energy market transforms from a regulated market to a deregulated one, the demands for a power plant are highly uncertain. In this paper, we study a two-stage robust optimization formulation and provide a tractable solution approach for the problem. The computational experiments show the effectiveness of our approach. ArticleDownload View PDF

Robust Software Partitioning with Multiple Instantiation

The purpose of software partitioning is to assign code segments of a given computer program to a range of execution locations such as general purpose processors or specialist hardware components. These execution locations differ in speed, communication characteristics, and in size. In particular, hardware components offering high speed tend to accommodate only few code segments. … Read more

On the Power of Robust Solutions in Two-Stage Stochastic and Adaptive Optimization Problems

We consider a two-stage mixed integer stochastic optimization problem and show that a static robust solution is a good approximation to the fully-adaptable two-stage solution for the stochastic problem under fairly general assumptions on the uncertainty set and the probability distribution. In particular, we show that if the right hand side of the constraints is … Read more