Wasserstein Regularization for 0-1 Loss

Wasserstein distributionally robust optimization (DRO) finds robust solutions by hedging against data perturbation specified by distributions in a Wasserstein ball. The robustness is linked to the regularization effect, which has been studied for continuous losses in various settings. However, existing results cannot be simply applied to the 0-1 loss, which is frequently seen in uncertainty … Read more

Decision-making with Side Information: A Causal Transport Robust Approach

We consider stochastic optimization with side information where, prior to decision making, covariate data are available to inform better decisions. In particular, we propose to consider a distributionally robust formulation based on causal transport distance. Compared with divergence and Wasserstein metric, the causal transport distance is better at capturing the information structure revealed from the conditional distribution … Read more

Data-driven Multistage Distributionally Robust Linear Optimization with Nested Distance

We study multistage distributionally robust linear optimization, where the uncertainty set is defined as a ball of distribution centered at a scenario tree using the nested distance. The resulting minimax problem is notoriously difficult to solve due to its inherent non-convexity. In this paper, we demonstrate that, under mild conditions, the robust risk evaluation of … Read more

Robust Two-Stage Optimization with Covariate Data

We consider a generalization of two-stage decision problems in which the second-stage decision may be a function of a predictive signal but cannot adapt fully to the realized uncertainty. We will show how such problems can be learned from sample data by considering a family of regularized sample average formulations. Furthermore, our regularized data-driven formulations … Read more

Submodularity, pairwise independence and correlation gap

In this paper, we provide a characterization of the expected value of monotone submodular set functions with $n$ pairwise independent random inputs. Inspired by the notion of “correlation gap”, we study the ratio of the maximum expected value of a function with arbitrary dependence among the random inputs with given marginal probabilities to the maximum … Read more

Decarbonizing OCP

Problem definition: We present our collaboration with the OCP Group, one of the world’s largest producers of phosphate and phosphate-based products, in support of a green initiative designed to reduce OCP’s carbon emissions significantly. We study the problem of decarbonizing OCP’s electricity supply by installing a mixture of solar panels and batteries to minimize its … Read more

A Double-oracle, Logic-based Benders decomposition approach to solve the K-adaptability problem

We propose a novel approach to solve K-adaptability problems with convex objective and constraints and integer first-stage decisions. A logic-based Benders decomposition is applied to handle the first-stage decisions in a master problem, thus the sub-problem becomes a min-max-min robust combinatorial optimization problem that is solved via a double-oracle algorithm that iteratively generates adverse scenarios … Read more

Target-Oriented Regret Minimization for Satisficing Monopolists

We study a robust monopoly pricing problem where a seller aspires to sell an item to a buyer. We assume that the seller, unaware of the buyer’s willingness to pay, ambitiously optimizes over a space of all individual rational and incentive compatible mechanisms with a regret-type objective criterion. Using robust optimization, Kocyigit et al. (2021) … Read more

A General Wasserstein Framework for Data-driven Distributionally Robust Optimization: Tractability and Applications

Data-driven distributionally robust optimization is a recently emerging paradigm aimed at finding a solution that is driven by sample data but is protected against sampling errors. An increasingly popular approach, known as Wasserstein distributionally robust optimization (DRO), achieves this by applying the Wasserstein metric to construct a ball centred at the empirical distribution and finding … Read more

A New Dual-Based Cutting Plane Algorithm for Nonlinear Adjustable Robust Optimization

This paper explores a class of nonlinear Adjustable Robust Optimization (ARO) problems, containing here-and-now and wait-and-see variables, with uncertainty in the objective function and constraints. By applying Fenchel’s duality on the wait-and-see variables, we obtain an equivalent dual reformulation, which is a nonlinear static robust optimization problem. Using the dual formulation, we provide conditions under … Read more