Robust Stochastic Optimization Made Easy with RSOME

We present a new distributionally robust optimization model called robust stochastic optimization (RSO), which unifies both scenario-tree based stochastic linear optimization and distributionally robust optimization in a practicable framework that can be solved using the state-of-the-art commercial optimization solvers. We also develop a new algebraic modeling package, RSOME to facilitate the implementation of RSO models. … Read more

The Adaptive Sampling Gradient Method: Optimizing Smooth Functions with an Inexact Oracle

Consider settings such as stochastic optimization where a smooth objective function $f$ is unknown but can be estimated with an \emph{inexact oracle} such as quasi-Monte Carlo (QMC) or numerical quadrature. The inexact oracle is assumed to yield function estimates having error that decays with increasing oracle effort. For solving such problems, we present the Adaptive … Read more

A Stochastic MPC Framework for Stationary Battery Systems

We present a stochastic model predictive control (MPC) framework to determine real-time commitments in energy and frequency regulation markets for a stationary battery system while simultaneously mitigating long-term demand charges for an attached load. The framework solves a two-stage stochastic program over a receding horizon that maximizes the expected profit and that factors in uncertainty … Read more

Vector Transport-Free SVRG with General Retraction for Riemannian Optimization: Complexity Analysis and Practical Implementation

In this paper, we propose a vector transport-free stochastic variance reduced gradient (SVRG) method with general retraction for empirical risk minimization over Riemannian manifold. Existing SVRG methods on manifold usually consider a specific retraction operation, and involve additional computational costs such as parallel transport or vector transport. The vector transport-free SVRG with general retraction we … Read more

Multicut decomposition methods with cut selection for multistage stochastic programs

We introduce a variant of Multicut Decomposition Algorithms (MuDA), called CuSMuDA (Cut Selection for Multicut Decomposition Algorithms), for solving multistage stochastic linear programs that incorporates strategies to select the most relevant cuts of the approximate recourse functions. We prove the convergence of the method in a finite number of iterations and use it to solve … Read more

Integrated Generator Maintenance and Operations Scheduling under Uncertain Failure Times

Planning maintenances and operations is an important concern in power systems. Although optimization based joint maintenance and operations scheduling is studied in the literature, sudden disruptions due to random generator failures are not considered. In this paper we propose a stochastic mixed-integer programming approach for integrated condition-based maintenance and operations scheduling problem for a fleet … Read more

An Investigation of Newton-Sketch and Subsampled Newton Methods

Sketching, a dimensionality reduction technique, has received much attention in the statistics community. In this paper, we study sketching in the context of Newton’s method for solving finite-sum optimization problems in which the number of variables and data points are both large. We study two forms of sketching that perform dimensionality reduction in data space: … Read more

A Progressive Hedging Based Branch-and-Bound Algorithm for Stochastic Mixed-Integer Programs

Progressive Hedging (PH) is a well-known algorithm for solving multi-stage stochastic convex optimization problems. Most previous extensions of PH for stochastic mixed-integer programs have been implemented without convergence guarantees. In this paper, we present a new framework that shows how PH can be utilized while guaranteeing convergence to globally optimal solutions of stochastic mixed-integer convex … Read more

Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming

Unit commitment (UC) is a key operational problem in power systems used to determine an optimal daily or weekly generation commitment schedule. Incorporating uncertainty in this already difficult mixed integer optimization problem introduces significant computational challenges. Most existing stochastic UC models consider either a two-stage decision structure, where the commitment schedule for the entire planning … Read more

Interchangeability principle and dynamic equations in risk averse stochastic programming

In this paper we consider interchangeability of the minimization operator with monotone risk functionals. In particular we discuss the role of strict monotonicity of the risk functionals. We also discuss implications to solutions of dynamic programming equations of risk averse multistage stochastic programming problems. Article Download View Interchangeability principle and dynamic equations in risk averse … Read more