Distributionally Robust Logistic Regression

This paper proposes a distributionally robust approach to logistic regression. We use the Wasserstein distance to construct a ball in the space of probability distributions centered at the uniform distribution on the training samples. If the radius of this ball is chosen judiciously, we can guarantee that it contains the unknown data-generating distribution with high … Read more

Distributionally robust chance-constrained games: Existence and characterization of Nash equilibrium

We consider an n-player finite strategic game. The payoff vector of each player is a random vector whose distribution is not completely known. We assume that the distribution of a random payoff vector of each player belongs to a distributional uncertainty set. We define a distributionally robust chance-constrained game using worst-case chance constraint. We consider … Read more

Stability Analysis for Mathematical Programs with Distributionally Robust Chance Constraint

Stability analysis for optimization problems with chance constraints concerns impact of variation of probability measure in the chance constraints on the optimal value and optimal solutions and research on the topic has been well documented in the literature of stochastic programming. In this paper, we extend such analysis to optimization problems with distributionally robust chance … Read more

Tight second-stage formulations in two-stage stochastic mixed integer programs

We study two-stage stochastic mixed integer programs (TSS-MIPs) with integer variables in the second stage. We show that under suitable conditions, the second stage MIPs can be convexified by adding parametric cuts a priori. As special cases, we extend the results of Miller and Wolsey (Math Program 98(1):73-88, 2003) to TSS-MIPs. Furthermore, we consider second … Read more

Quantitative Stability Analysis for Distributionally Robust Optimization With Moment Constraints

In this paper we consider a broad class of distributionally robust optimization (DRO for short) problems where the probability of the underlying random variables depends on the decision variables and the ambiguity set is de ned through parametric moment conditions with generic cone constraints. Under some moderate conditions including Slater type conditions of cone constrained moment … Read more

A Quantitative Comparison of Risk Measures

The choice of a risk measure reflects a subjective preference of the decision maker in many managerial, or real world economic problem formulations. To evaluate the impact of personal preferences it is thus of interest to have comparisons with other risk measures at hand. This paper develops a framework for comparing different risk measures. We … Read more

Nonstationary Direct Policy Search for Risk-Averse Stochastic Optimization

This paper presents an approach to non-stationary policy search for finite-horizon, discrete-time Markovian decision problems with large state spaces, constrained action sets, and a risk-sensitive optimality criterion. The methodology relies on modeling time variant policy parameters by a non-parametric response surface model for an indirect parametrized policy motivated by the Bellman equation. Through the interpolating … Read more

A Stochastic Programming Approach for Shelter Location and Evacuation Planning

Shelter location and traffic allocation decisions are critical for an efficient evacuation plan. In this study, we propose a scenario-based two-stage stochastic evacuation planning model that optimally locates shelter sites and that assigns evacuees to nearest shelters and to shortest paths within a tolerance degree to minimize the expected total evacuation time. Our model considers … Read more

Integer Programming Approaches for Appointment Scheduling with Random No-shows and Service Durations

We consider a single-server scheduling problem given a fixed sequence of appointment arrivals with random no-shows and service durations. The probability distribution of the uncertain parameters is assumed to be ambiguous and only the support and first moments are known. We formulate a class of distributionally robust (DR) optimization models that incorporate the worst-case expectation/conditional … Read more

SDDP for multistage stochastic programs: Preprocessing via scenario reduction

Even with recent enhancements, computation times for large-scale multistage problems with risk-averse objective functions can be very long. Therefore, preprocessing via scenario reduction could be considered as a way to significantly improve the overall performance. Stage-wise backward reduction of single scenarios applied to a fixed branching structure of the tree is a promising tool for … Read more