Decision Rule Bounds for Two-Stage Stochastic Bilevel Programs

We study stochastic bilevel programs where the leader chooses a binary here-and-now decision and the follower responds with a continuous wait-and-see-decision. Using modern decision rule approximations, we construct lower bounds on an optimistic version and upper bounds on a pessimistic version of the leader’s problem. Both bounding problems are equivalent to explicit mixed-integer linear programs … Read more

Ambiguous Chance-Constrained Binary Programs under Mean-Covariance Information

We consider chance-constrained binary programs, where each row of the inequalities that involve uncertainty needs to be satis ed probabilistically. Only the information of the mean and covariance matrix is available, and we solve distributionally robust chance-constrained binary programs (DCBP). Using two different ambiguity sets, we equivalently reformulate the DCBPs as 0-1 second-order cone (SOC) programs. … Read more

Efficient methods for several classes of ambiguous stochastic programming problems under mean-MAD information

We consider decision making problems under uncertainty, assuming that only partial distributional information is available – as is often the case in practice. In such problems, the goal is to determine here-and-now decisions, which optimally balance deterministic immediate costs and worst-case expected future costs. These problems are challenging, since the worst-case distribution needs to be … Read more

Exact and Inexact Subsampled Newton Methods for Optimization

The paper studies the solution of stochastic optimization problems in which approximations to the gradient and Hessian are obtained through subsampling. We first consider Newton-like methods that employ these approximations and discuss how to coordinate the accuracy in the gradient and Hessian to yield a superlinear rate of convergence in expectation. The second part of … Read more

Time and Dynamic Consistency of Risk Averse Stochastic Programs

In various settings time consistency in dynamic programming has been addressed by many authors going all the way back to original developments by Richard Bellman. The basic idea of the involved dynamic principle is that a policy designed at the first stage, before observing realizations of the random data, should not be changed at the … Read more

Improving the Randomization Step in Feasibility Pump

Feasibility pump (FP) is a successful primal heuristic for mixed-integer linear programs (MILP). The algorithm consists of three main components: rounding fractional solution to a mixed-integer one, projection of infeasible solutions to the LP relaxation, and a randomization step used when the algorithm stalls. While many generalizations and improvements to the original Feasibility Pump have … Read more

Maximizing a class of utility functions over the vertices of a polytope

Given a polytope X, a monotone concave univariate function g, and two vectors c and d, we study the discrete optimization problem of finding a vertex of X that maximizes the utility function c’x + g(d’x). This problem has numerous applications in combinatorial optimization with a probabilistic objective, including estimation of project duration with stochastic … Read more

On deterministic reformulations of distributionally robust joint chance constrained optimization problems

A joint chance constrained optimization problem involves multiple uncertain constraints, i.e., constraints with stochastic parameters, that are jointly required to be satisfied with probability exceeding a prespecified threshold. In a distributionally robust joint chance constrained optimization problem (DRCCP), the joint chance constraint is required to hold for all probability distributions of the stochastic parameters from … Read more

Optimization with stochastic preferences based on a general class of scalarization functions

It is of crucial importance to develop risk-averse models for multicriteria decision making under uncertainty. A major stream of the related literature studies optimization problems that feature multivariate stochastic benchmarking constraints. These problems typically involve a univariate stochastic preference relation, often based on stochastic dominance or a coherent risk measure such as conditional value-at-risk (CVaR), … Read more

Ambiguous Risk Constraints with Moment and Unimodality Information

Optimization problems face random constraint violations when uncertainty arises in constraint parameters. Effective ways of controlling such violations include risk constraints, e.g., chance constraints and conditional Value-at-Risk (CVaR) constraints. This paper studies these two types of risk constraints when the probability distribution of the uncertain parameters is ambiguous. In particular, we assume that the distributional … Read more