Ambiguous Probabilistic Programs

Probabilistic programs are widely used decision models. When implemented in practice, however, there often exists distributional ambiguity in these models. In this paper, we model the ambiguity using the likelihood ratio (LR) and use LR to construct various ambiguity sets. We consider ambiguous probabilistic programs which optimize under the worst case. Ambiguous probabilistic programs can … Read more

Ancestral Benders’ Cuts and Multi-term Disjunctions for Mixed-Integer Recourse Decisions in Stochastic Programming

This paper focuses on solving two-stage stochastic mixed integer programs (SMIPs) with general mixed integer decision variables in both stages. We develop a decomposition algorithm in which the first stage approximation is solved using a branch-and-bound tree with nodes inheriting Benders’ cuts that are valid for their ancestor nodes. In addition, we develop two closely … Read more

Separable Approximations and Decomposition Methods for the Augmented Lagrangian

In this paper we study decomposition methods based on separable approximations for minimizing the augmented Lagrangian. In particular, we study and compare the Diagonal Quadratic Approximation Method (DQAM) of Mulvey and Ruszczy\'{n}ski and the Parallel Coordinate Descent Method (PCDM) of Richt\'{a}rik and Tak\'{a}\v{c}. We show that the two methods are equivalent for feasibility problems up … Read more

A Short Proof of Strassen’s Theorem Using Convex Analysis

We give a simple proof of Strassen’s theorem on stochastic dominance using linear programming duality, without requiring measure-theoretic arguments. The result extends to generalized inequalities using conic optimization duality and provides an additional, intuitive optimization formulation for stochastic dominance. CitationNorthwestern Univ., Aug., 2013ArticleDownload View PDF

Temporal vs. Stochastic Granularity in Thermal Generation Capacity Planning with Wind Power

We propose a stochastic generation expansion model, where we represent the long-term uncertainty in the availability and variability in the weekly wind pattern with multiple scenarios. Scenario reduction is conducted to select a representative set of scenarios for the long-term wind power uncertainty. We assume that the short-term wind forecast error induces an additional amount … Read more

Stochastic linear programming games with concave preferences

We study stochastic linear programming games: a class of stochastic cooperative games whose payoffs under any realization of uncertainty are determined by a specially structured linear program. These games can model a variety of settings, including inventory centralization and cooperative network fortification. We focus on the core of these games under an allocation scheme that … Read more

A scenario decomposition algorithm for 0-1 stochastic programs

We propose a scenario decomposition algorithm for stochastic 0-1 programs. The algorithm recovers an optimal solution by iteratively exploring and cutting-off candidate solutions obtained from solving scenario subproblems. The scheme is applicable to quite general problem structures and can be implemented in a distributed framework. Illustrative computational results on standard two-stage stochastic integer programming and … Read more

An approximation scheme for a class of risk-averse stochastic equilibrium problems

We consider two models for stochastic equilibrium: one based on the variational equilibrium of a generalized Nash game, and the other on the mixed complementarity formulation. Each agent in the market solves a one-stage risk-averse optimization problem with both here-and-now (investment) variables and (production) wait-and-see variables. A shared constraint couples almost surely the wait-and-see decisions … Read more

Sample Average Approximation Method for Compound Stochastic Optimization Problems

The paper studies stochastic optimization (programming) problems with compound functions containing expectations and extreme values of other random functions as arguments. Compound functions arise in various applications. A typical example is a variance function of nonlinear outcomes. Other examples include stochastic minimax problems, econometric models with latent variables, and multilevel and multicriteria stochastic optimization problems. … Read more

Finitely Convergent Decomposition Algorithms for Two-Stage Stochastic Pure Integer Programs

We study a class of two-stage stochastic integer programs with general integer variables in both stages and finitely many realizations of the uncertain parameters. Based on Benders’ method, we propose a decomposition algorithm that utilizes Gomory cuts in both stages. The Gomory cuts for the second-stage scenario subproblems are parameterized by the first-stage decision variables, … Read more